# A Computer Program (VEHSIM) for Vehicle Fuel Economy and Performance Simulation (Automobiles and Light Trucks) <br> Volume II: Users Guide 

Russell W. Zub

Transportation Systems Center


Cambridge MA 02142

October 1981
Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

## NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

## NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.


## PREFACE

Volume II is a continuation of a multi document set describing VEHSIM. This volume contains sample simulations, an explanation of the input data and input forms, graphical options program for use with VEHSIM and a list of common errors for the beginning VEHSIM user.

A strong effort has been made to consider the user's viewpoint from the execution of the program. Sample cases have been included to illustrate the various simulation methods available and the most frequently used VEHSIM options.

The Energy Technology Branch expresses thanks to Mr. Jack Dolan, Systems Development Corporation, for assisting in the preparation of this volume.


## table of contents

Section Page

1. INTRODUCTION ..... 1-1
2. PROGRAM EXECUTION ..... 2-1
2.1 Simulation Command Structure ..... 2-1
2.2 General User Information. ..... 2-9
2.3 Loading the Program ..... 2-10
2.4 Execution ..... 2-11
2.4.1 Interactive Simulation ..... 2-12
2.4.2 Indirect Simulation ..... 2-14
2.4.3 Batch Simulation ..... 2-15
2.5 Output ..... 2-16
2.6 VEHSIM Parts Generation ..... 2-18
3. SAMPLE SIMULATIONS ..... 3-1
3.1 Loading the Program ..... 3-2
3.2 Indirect Simulation ..... 3-4
3.3 Interactive Simulation ..... 3-8
3.4 Batch Simulation ..... 3-28
3.5. Log File ..... 3-51
3.6 Scan Program ..... ?-54
4. VEHICLE SYSTEMS INTEGRATION ..... $4-1$
5. INPUT DATA FORMAT
5.1 Data Format Sheet Procedure ..... 5-1
5.2 Data Sheets ..... 5-3
6. GRAPHIC OPTIONS ..... 6-1
6.1 Description of Program SURF3D.FOR ..... 6-1
6.2 Description of Program SURF2D.FOR ..... 6-2
6.3 Description of Program GEO.FOR ..... 6-6
6.4 Description of Program HPOWER.FOR ..... 6-9
6.5 Description of Program DIABGR.FOR ..... 6-11
6.6 Description of Program TRANSF.FOR ..... 6-11
COMMON ERRORS ..... 7-1

## LIST OF ILLUSTRATIONS

Figure Page
4-1 VEHSIM REQUEST ..... 4-2
4-2 ENGINE FUEL FLOW FOR 1981 PRODUCTION ENGINE ..... 4-8
4-3 SAMPLE SHIFT LOGIC USING VACUUM ..... 4-11
4-4 SAMPLE SHIFT LOGIC USING ENGINE THROTTLE ANGLE ..... 4-12
4-5 SAMPLE 9.5 INCH TORQUE CONVERTER CURVE ..... 4-14
4-6 SAMPLE TORQUE CONVERTER CURVE ILLUSTRATING "K" FACTOR ..... 4-16
4-7 ALTERNATOR DRAG TORQUE VS. ENGINE SPEED ..... 4-17
4-8 SPEED-VERSUS-TIME TRACES OF FTP AND HWFET DRIVING CYCLES ..... 4-19
6-1 ENGINE FUEL MAP FOR 5.9ौ ENGINE ..... 6-4
6-2 HORSEPOWER AS A FUNCTION OF ENGINE TORQUE AND RPM ..... 6-5
6-3 ENGINE FUEL MAP CONTOUR PLOT ..... 6-7
6-4 ENGINE HORSEPOWER AS A FUNCTION OF TORQUE AND RPM ..... 6-8
6-5 ENGINE FUEL MAP CONTOUR PLOT ..... 6-10
6-6 FAMILY OF HORSEPOWER CURVES ..... 6-12
6-7 ENGINE MAP DATA POINTS ..... 6-13

## LIST OF TABLES

Table ..... Page
4-1 INERTIA WEIGHT CLASSES ..... 4-3
4-2 TIRE IDENTIFICATION AND TEST DATA LIGHT TRUCK TIRES ..... 4-6
4-3 EPA SHIFT LOGIC ..... 4-10
4-4 DRIVING CYCLE CHARACTERISTICS ..... 4-18
6-1 ARRAY OF FIVE DIMENSIONAL VECTORS ..... 6-3
6-2 ENGINE DATA FROM VEHSIM DATA BASE ..... 6-14

This manual will describe the VEHSIM operating commands and the various methods in which the user can execute the program. For each method of operation, interactive, batch processing from a terminal and batch processing using a card deck, a sample run will be presented along with a listing of the input data format and the sample output data.

The method of operation chosen by the user, at a particular time, will probably be the one most convenient. For example, interactive operation typically requires more connect time at a terminal than batch processing, but offers the advantage of maximum convenience when modifying the components of the vehicle in order to determine the influences on fuel economy. Batch processing requires a VEHSIM control file (made up of VEHSIM operating commands and parts) which must be created before submitting the run, but offers the advantage of executing the program during low rate, off-peak hours. The use of cards, rather than a terminal, may be more convenient for preparing a VEHSIM control file due to the enumerated column headings, especially for a user not accustomed to terminal operation. Submitting cards for execution of VEHSIM usually becomes unnecessarily cumbersome once a VEHSIM control file has been prepared in the user's disk area. Once a VEHSIM control file has been prepared, it will be most convenient for the user to submit it from the terminal.

The program is most efficient when a large scenario is being executed in such a way. as to optimize data retrieval from the disk. For example, a series of *USE commands could be used to "construct" the vehicle initially. Then, a sequence of alternating *MODIFY and *SIMULATE commands would allow the user to try different vehicle weights with different rear axle ratios. This would require no further disk accesses and would accomplish many trials. At that point, a different drive schedule could be retrieved from the disk and the process could be repeated for more
trials. If, the user alternated drive schedules for each *MODIFY command, the program would use a great deal more time to retrieve data from the disk and, therefore, cost more to run.

VEHSIM was designed to operate on the Control Data Corporation 6600 Scope Operating System using the Run 2, 3 Fortran Compiler. However, VEHSIM is programmed in the Standard FORTRAN IV language and should convert to other systems readily with only minor modifications to system dependent operations. For the contents of this particular manual, any and all references made to the loading, execution, etc., of the VEHSIM program, will pertain to the in-house DEC system-10 Timesharing System.

## 2. PROGRAM EXECUTION

### 2.1 SIMULATION COMMAND STRUCTURE

Since VEHSIM is designed to function by a series of commands input by the user, the user should be familiar with each command, its special purpose, and its use. These commands may indicate new data to be stored on the disk file, old data to be retrieved from the disk file, modifications to data currently in core, etc. All VEHSIM commands are identified by an asterisk (*) in column one (1), followed by the command directive, if any, to complete the command. VEHSIM commands, for both interactive and noninteractive operation, will be listed and described in this section. Some commands have a common name and produce the same result for interactive and non-interactive operation.

The following is a list of commands which are available for the VEHSIM model. As explained previously, the VEHSIM commands have a general purpose or function, i.e., storing new parts on the disk, retrieving parts currently residing on the disk, etc., and that is the context by which these commands will be presented. A11 VEHSIM commands contain a unique part name beginning in Column 19. The actual format of the command is shown in detail in section 3.

Storing New Parts Data
*ENGINE - indicates that engine data is to follow
*FULL CONVERTER - indicates that torque converter data is to follow specifying input and output torques and RPM's
*S.R. CONVERTER - indicates that torque converter data is to follow specifying input torque and RPM along with a speed ratio and torque ratio
*VEHICLE - indicates that gross vehicle data (weight, frontal area, axle ratio, etc) is to follow


The unique part name which begins in Column 7, is the same name assigned to that particular part when it was stored on the disk data file as a new part. When the *ENGINE comand is specified, the user must define to which engine number and to which gears the engine data will be assigned. For *ENGINE, the program allows a maximum of 20 gears and 2 engines. If the *GEAR command is specified, the user must give the gear number to which this data is to be assigned. Up to 20 accessories may be included by using the *ACCESSORY command.
*REMAP - This command allows the user to obtain an engine map, engine data, which will print out the speed and torque points that the user specifies rather than the points as input initially. This capability provides a convenient method of comparing fuel rates, vacuums, etc., between engines whose initial data were taken at different points in the engine performance map. Again, the unique name of the engine to be remapped should begin in Column 19. The units for engine speed, torque and fuel rate must be specified as follows:
(a) RPM
(or) PISTON
(b) TORQUE
(or) BMEP

HP
(c) $\mathrm{LB} / \mathrm{HR}$
(or) BSFC

- engine speed (RPM) piston speed (ft./min.)
- torque (lb.-ft.)
- brake mean effective pressure (psi)
- horsepower (hp.)
- fuel consumption (lb./hr.)
- brake specific fuel consumption (lb./hp.-hr.)
(or) GAL/HR - fuel flow rate (gal./hr.)
*DUMP - This command allows the user to obtain a dump of a particular part or of all the parts currently stored on parts data file. If the word

DIRECTORY appears, beginning in Column 19, instead of a part name, only the names and comment fields of the various parts will appear in a directory format.

## Modifying The Parts Data

*MODIFY

- This command enables the user to reset the value of a number of individual program parameters without creating a change in those parameters in the original data set on the disk file. The MODIFY command should only be used after the USE command which retrieves the data to be overridden. Available option names, which also begin in Column 19, are as follows:

AREA - frontal area ( $\mathrm{sq}, \mathrm{ft}$ )
C1 - first constant in rolling resistance equation (dimensicnless)
C2 - second constant in rolling resistance equation (1./MPH)

- aerodynamic drag coefficient

CYLINDERS - number of cylinders in the engine
DIESEL - fuel shut off during deceleration
DISPL - engine displacement (cu. in.)
DOWNSHIFT - \% change in vacuum/throttle downshift level
DYNAM - dynamometer (HP)
FUEL - fuel specific gravity
IDLE - engine idle (RPM)
LOCKUP - an RPM for a particular gear
REAR - rear axle ratio
STEP - time step for the program (sec.)
STROKE - piston stroke (in.)

| TIRE | - tire efficiency ( $\leq 1$. ) |
| :--- | :--- |
| WEIGHT | - gross vehicle weight (lbs.) |
| WIND | - wind velocity (MPH) |
| UPSHIFT | - \% change in vacuum/throttle upshift level |

The default time step of 0.05 seconds may be overridden with the MODIFY command to perform the same run with a longer time step in order to cut cost. [Note: Due to certain tolerences built into the program, a time step of less than 0.05 seconds is not recommended. Also, if a new stroke, number of cylinders or displacement is specified, the program will automatically scale the engine (s) prior to the start of the next simulations.]
*LOCKUP CONVERTER GEAR $\}$ - These commands provide the user with the *UNLOCK CONVERTER GEAR $\}$ capability of "locking up" or "unlocking" the torque converter for any of the gears in a particular transmission. LOCKUP will render the torque converter invisible by setting the speed ratio and the torque ratio to unity and zeroing the input and output inertias while the vehicle is in the specified gear(s). UNLOCK can be used to "unlock" a previously "locked up" gear. When an automatic transmission is being used, the gears will be "unlocked" and when a manual transmission is used, the gears will be "locked up."
*PRINT UNITS(S) - This command allows the user to specify units for the engine data printout resulting from a USE or ENGINE command into units other than those in which it was originally input on the disk data file. The units are the same as those described in the REMAP command section.

- This command allows the user to zero the core memory containing all data currently stored by the program and reset all program flags and pointers. In the case of accessory data, for example, the program accumulates a list of accessory tables, one for each USE command. Unless a ZERO command is issued, a new set of accessories would be added to the old set rather than their being replaced.

Performing and Monitoring a Simulation
*SIMULATE - This command begins the actual simulation. It first checks to see that all of the necessary parts have been assembled from the parts data files on the disk by means of the USE commands or new parts data cards and allows the vehicle to reach the initial conditions specified by the driving schedule and then, executes the actual driving schedule itself. At the end of the simulation, more USE or MODIFY commands may be used to bring in or reset data for another simulation, and so forth, until the end of the input data is reached at which time the program terminates execution.
*LIMIT PRINT - This command enables the user to limit the amount of printed output that is to be received for the simulations that have been requested. The four available options are:

SEGMENT - prints out detailed output for the final time step of each segment of the driving schedule as well as the initial conditions step.

MILE - prints out detailed output at fixed mileposts along the driving schedule (e.g. every 0.1 mile ) as well as the initial conditions steps.

SEC - prints out detailed output at fixed increments along the driving schedule (e.g. every 10.0 seconds) as well as the initial conditions step.

OFF - prints out detailed output at each and every time step in the simulation.

SUMMARY - only the summary sheet is printed at the end of the simulation
(Note: Unless otherwise specified, the program defaults to SUMMARY. If OFF is given, the printout includes the parts data accessed by a USE command; otherwise, no parts data will be listed.)
*TITLE
$\left.\begin{array}{l}\text { *DELETE } \\ \text { *DROP }\end{array}\right\}$
*DEBUG

- This command allows the user to specify a $60-$ character title which will appear on the top of the summary data page at the end of each simulation. Each TITLE command overrides the previous one so that the user has the option of specifying a different title for each simulation or the same title for all of the simulations performed during that run. The data to be printed on all outputs may be specified here to override the actual data.
- This command will cause the part named to be dropped from the parts data file. Its format and choices are the same as the USE command except no engine or gear numbers are specified.
- This command can be used to give the user extra information beyond the regular run printout. It is very useful for debugging runs that fail or runs that appear to have a problem (e.g. irregular shift patterns). The DEBUG command can be operated in four modes:

OFF - turns off DEBUG printout entirely

SHIFT prints DEBUG information before and after each shift from the 'start' to the 'stop' segments. Also, this command is useful for detecting shift stutter.

SEGMENT - prints DEBUG information from the 'start' to the 'stop' segments.
(Note: The DEBUG mode will remain in effect until it is changed by another DEBUG command. This command is optional and the default value is OFF.

In the IA mode, DEBUG is activated by typing "DEBUG" (cr). VEHSIM will type "DEBUG": indicating that it is in DEBUG mode. Then enter the mode and start and stop limits. This line is read using a format of $A 5,2 F$ so one must be sure to enter enough spaces between the mode and the start limit. DEBUG output format comes in four lines containing the following variables:
line 1 CUMT, CUMD, V, ACCEL, FWHEEL, FROLL, FAERO, FACCEL, FGRADE;
line 2 DT, NGEAR, ISEG, NRTSEG, TORQW, TR, TORQP, TORQ2, TORQ1, TORQF, TORQE;

1ine 3 PCTWOT, HIDNAM, HPBR, RPMW, DRPMW, RPMP, RPM2, RPME, DRPME;
line 4 NGOCAL, MAPOK.
These variables are defined in Volume III. If no "start" limit is given, DEBUG will start at the start of the simulation. If no "stop" limit is given, DEBUG will continue until the simulation ends or aborts. DEBUG mode will remain in effect for all SIMULATE commands until it is changed to another DEBUG command. The default value is off. The user is cautioned against using DEBUG, since voluminous printout may result. The shift DEBUG output format is printed in the following order:

HSMODE, HTMODE, CUMTLS, CSTIM, TORQA, TORQAO, ATORQF, ARPME, DRPM1E, DRPMC, DTC, LCLTCH.

This data is printed only during shifting.
A special note on the command:
*SPLIT - As an enhancement to the model, this command is used to trigger a flag indicating a split torque converter is being used. No other keyword or words are necessary with this command. Since this command cannot be changed with the MODIFY command, it is suggested that if the user is simulating more than one case and the SPLIT command is being used, then the SPLIT command should be at the beginning of the last case.

### 2.2 GENERAL USER INFORMATION

Before proceeding to the actual execution of the model the user should be aware that the overall method to be followed in using VEHSIM is to 'construct' a vehicle by retrieving data currently on the disk files, modifying the data, if necessary, and then, executing the desired driving schedule.

The minimum amount of data required for any given simulation is as follows:

1) engine data
2) vehicle data
3) torque converter data (one table for the drive converter and one table for the coast converter)
4) gear box data
5) a shift logic
6) a route description
7) a driving schedule

Optional data consists of accessory tables which are not required, but may be included, if desired. As mentioned earlier in
the command section, when a manual transmission is required, the user may specify that all gears are "locked up." This means that the speed ratio and the torque ratio, for the torque converter, will be set to unity. In addition, an appropriate shift logic should be used.

### 2.3 LOADING THE PROGRAM

The fact was mentioned in the Introduction, but the reader is reminded, that, "...any and all references made to the loading, execution, etc., of the VEHSIM program, will pertain to the inhouse DEC system-10 Timesharing System!" Being aware of this will facilitate the effort and hasten the time required to get the VEHSIM model operational. Also, when examples of simulations are listed, in the interactive and particularly indirect modes all user responses will be underlined.

When the user issues the LOAD command, the Linking Loader, LINK-10, is automatically initialized. The main input for the LOAD command is the Fortran program for the VEHSIM model and the associated assembly language program. Output of the LOAD command will be an executable version of the user's programs, an object module, that will be in the form of a binary file. Since the loaded program at this point reflects the state of the user's core memory, it is usually referred to as the core image.

Since the LOAD command is part of the COMPIL-class commands, compilation of the subroutines takes place. FORTRAN-10 responds with two levels of messages - fatal error and warnings. Warning messages indicate a possible problem. The compilation will continue and an object program will be generated. If a fatal error is encountered in any pass of the compiler, the remaining passes will not be called. Additional errors that would be detected in later compiler passes may not become apparent until the first errors are corrected. As the word fatal denotes, it is not possible to penerate a correct object program from a source program which contains a fatal error. The format of the messages is:
?FTNXXX LINE: $n$ text
or
\%FTNXXX LINE: $n$ text
where

| $?$ | $=$ fatal |
| :--- | :--- |
| $\%$ | $=$ warning |
| FTN | $=$ FORTRAN mnemonic |
| XXX | $=3$ letter mnemonic for the error message |
| LINE: n | $=$ line number where error accurred |
| text | $=$ explanation of error. |

This feature will be fully appreciated by the user, when a new core image file is being created; consequently the user may find it desirable to retain the former core image, because of an enhancement to the program, finding an error in the program, etc.

Now that the LOAD command has been completed and a core image file is ready, the user can request LINK-10 to output the core image to the user's area for storage. By using the SSAV command along with an appropriate name for the model, the user avoids future loadings of the model. The program is now ready for execution when the user enters the RUN command along with the name entered with the SSAV command.

If space on the user's disk area is at a premium because of other programs or data files, the user may delete the REL file generated by the LOAD command after the SSAV command has been completed.

As a final note, the switches in the LOAD string effectively reduce the swapping time of the system especially if two users happen to be using VEHSIM at the same time.

### 2.4 EXECUTION

A description of VEHSIM execution, through interactive and non-interactive operational modes, will be provided in this section.

The interactive mode permits the user three possible simulation methods:

1) interactive simulation in which the user is queried or directs VEHSIM
2) attached simulation through execution of a VEHSIM control file with monitoring at the terminal
3) detatched simulation through submission of a batch control file.

The first two methods permit switching control from one method to the other after completion of each run.

The non-interactive mode permits the submission of punched card batch control files. The card deck will contain a VEHSIM control file and instructions to execute VEHSIM. This method functions in a manner similar to detached simulation, except for the use of cards instead of interactive terminal commands.

In both the interactive and non-interactive modes it is assumed that the VEHSIM program and the required parts to be accessed are already on the disk. The interactive operational mode will be referred to as IA and the non-interactive mode will be referred to as NIA. During simulation in the IA mode, commands are typed on the terminal, whereas in the NIA mode, commands are punched on cards with an asterisk, starting in the first column. In the following descriptions, the abbreviation (cr) and the arrow (ぬ) both will indicate a carriage return in the IA mode. All of the NIA mode command formats are specified exactly by the data format sheets; therefore, these descriptions will not be repeated here.

### 2.4.1 Interactive Simulation

The ASK command puts VEHSIM into the IA mode. When using the ASK command, VEHSIM will cycle through all of the part types, querying the user as to the unique name of the particular part being used. When all of the parts have been loaded, VEHSIM gives
the user the option of going directly to the simulation or not, or going into the DIALOGUE mode, by asking "SIMULATE (Y/N/D)." If the user elects not to simulate, $N$, VEHSIM will then ask if various modifications are desired. When all of the modifications are completed to the user's satisfaction, the user is again offered the choice "SIMULATE (Y/N/D)." The user may cycle through the parts and modifications until the simulations are as he wishes. Then, the user may start the simulation, $Y$, or go into the DIALOGUE mode, D.

For interactive simulation, a number of characters have been designated to perform a few key functions through a program interrupt. These characters will also apply to the indirect simulation. These characters are as follows:

CTRL D - Type out debug information
CTRL E - Close all files and exit to monitor
CTRL N - Suppress end of driving segment messages
CTRL P - Pause to modify then continue simulation
CTRL S - Type out current status of simulation
CTRL D - Turn off simulation output except for error messages.

The CTRL abbreviation indicates that the teletype terminal control key is to be depressed. The first time that the special character is engaged, its function begins; if and when it's pressed again, the original condition returns. For example, when the CTRL $N$ character is pressed, the end of driving segment messages are suppressed. However, if the user decides that he wants to know how far into the driving schedule the simulation has gone, another CTRL $N$ will resume the end of driving segment messages.

While in the interactive mode, parts data may be listed for a particular part, all the parts within a part type, on the entire parts file. A listing is accomplished through the DUMP command which queries the user about the part and where it is to be
printed. Wild characters or a carriage return may be used as required for a group of parts.

The user has an option to obtain a directory of an individual part to make sure it currently resides on the disk, or a directory of all the parts within a part type, or for all the data currently stored in the disk parts data file. The directory command, DIR, is used for this feature along with a carriage return or wild characters for maximum flexibility. If the user wants a directory typed directly at his terminal, the TTY command must be entered. The directory which comes to the user's terminal is a "fast" directory, that is, only the part name will be typed. The print file directory (which automatically is printed during the DIRECTORY command) gives a "full" directory, that is, the part name, protection, data created, the part creator's identification code and the comment field associated with each part, are all included.

An interactive simulation does not produce a LOG file since the terminal output is a printed copy. A VEHSIM data file is generated which the user may SAVE, PRINT or DELETE after a run.

### 2.4.2 Indirect Simulation

Use of the INDIRECT (@) command allows the user to enter VEHSIM commands from a pre-made VEHSIM control file on the disk. Some users feel that the indirect simulation of VEHSIM is very convenient because once a control file is made, a minimum amount of user interaction is required. The command is used in the following manner:

$$
\begin{aligned}
& \text { @DEV:FILE EXT[P,PN] (cr) } \\
& \quad \text { or } \\
& \text { @FILE, EXT }
\end{aligned}
$$

where DEV:FILE.EXT[P,PN] is the general form for the control file input.

The VEHSIM program will then ask the user if a printed copy of the data file is desired. The user may save, print or delete
the data file being used. The program will now automatically check the user's commands and the parts until the last command of the initial simulation is encountered; at this point, the program will switch control back to the user. The user will know when command has been switched because an asterisk (*) will appear on the teletype. Since everything appears to be correct, the user may begin the simulation by typing SIM with a carriage return immediately following the asterisk. The program will now let the user know that the simulation is starting and has reached its initial conditions. Next, the program will print a message at the end of each driving schedule segment, unless the user has used the CTRL $N$ interrupt, when, after the driving schedule has been completed, the summary data sheet will be printed. The program will again return control to the user by printing an asterisk. Here, the user may choose to end the simulation by entering the word EXIT (cr) or continue the simulation, if more cases are invoived, by entering CONT (cr).

When the user has finally decided to terminate the simulation, he has the option of deleting, saving or printing (most probably) the data at the indicated time step of the simulation. The user can now enter $D$, DELETE, $S, S A V E, P$ or PRINT, and the program will now end its execution in the indirect mode.

### 2.4.3 Batch Simulation

2.4.3.1 Attached Simulation - A simulation can be conducted by the user at the terminal by entering a VEHSIM control file through the use of the BATCH command. Just as in the indirect mode of simulation, the program will cycle through the list of parts until the SIMULATE command, with the DIALOGUE option, returns control to the user. Here, before starting the first simulation, the user can make any desired modifications. Then, by typing SIM or SIMULATE, the user starts the first case. At the end of each case or simulation, after the summary sheet is printed, the user may exit from VEHSIM, EXIT, continue with the next case, CONTINUE, or change modes, DIALOGUE.
2.4.3.2 Detached Simulation - Basically, the batch control file is a series of instructions which tells the VEHSIM program which file in the user's area will be the input file.

Output from a batch job is written directly to a line printer. Along with the regular simulation output, a program created $\log$ file is produced. It is useful to print the log file especially if an abnormal condition terminates the run. At the completion of the run, the $\log$ file will be automatically retained in the user's area.

The print options previously described for interactive operations may also be used in batch processing.
2.4.3.3 Batch Card File Submission - Using a card deck input to run VEHSIM assumes that the program is already available on the disk. The card deck essentially contains a VEHSIM control file which serves as input data to run VEHSIM. The program is controlled in a manner similar to a terminal batch job, except for the use of cards.

### 2.5 OUTPUT

## The LOG File

An interactive simulation does not produce a log file since the terminal output is the printed copy. However, the interactive mode does produce the default output which includes the segment number of the driving schedule, segment time, distance, speed, CPU time in the segment, and the total CPU time. Also, five different clusters of data used in the simulation are printed in summary fashion at the end of each individual case.

Since the clusters of data have been mentioned, abrief word should be said about each cluster.

The first cluster shows the fuel economy, engine work per mile, average brake specific fuel consumption and average speed. If an emissions simulation were being performed, the fuel economy would show the reciprocal of the emissions (NOx or NOX simulations
are reasonable, HC and CO are not recommended) in grams per mile, provided the specific gravity in the engine map is specified as 0.1198.

The second cluster contains additional run data, the vehicle specification, and run conditions. With the exception of the aerodynamic drag and tires, this cluster is self-explanatory. The aerodynamic drag information shows the cross-sectional area and drag coefficient, while the tire information lists the linear term of the rolling resistance equation ( $\mathrm{lb} / 1000 \mathrm{lb}$ ), the velocity dependent term ( $1 \mathrm{~b} / 1000 \mathrm{lb}$ per MPH), and the tire friction (slippage) factor expressed as a decimal percentage.

The third cluster shows the time, distance, engine energy, and fuel. The percent of each total is portioned into amounts used during cruise, acceleration, deceleration, and idle. The fuel used during the braking is the percentage of the total which is consumed during closed throttle deceleration.

The fourth cluster of data shows the breakdown of the energy being supplied to the vehicle. Potential and kinetic energies and rotating inertia will be shown for certain types of driving schedules such as simulating the vehicle going up a hill (grade) and then terminating the driving schedule at the top of the hill.

The fifth cluster lists the percent of engine work consumed by various losses, the amount of engine braking and engine monitoring. Each of the losses is broken out separately, which provides the user with a convenient method to assess the influence of improved components. The percentage total should be approximately one hundred (100); however, this total will vary according to driving schedules and vehicles. The total is due to the numerical methods being employed by the model and transient effects. This total is not to be taken as an indication of the accuracy of the simulation.

In the batch simulation, a dump of each part used, a status report (names of the parts used), the output of the simulation at each specified time, shift frequency, the five cluster summary,
and a summary of the breakdown of the percent of time spent on various parts of the engine are made. The LOG file is automatically printed and stored in the user's area.

### 2.6 VEHSIM PARTS GENERATION

Normally, the user will not have to generate parts and add them to the data base. However, the user may want to generate new parts, create new situations (routes, driving schedules), and analyze the effects upon the model.

## Generate Parts File

The parts which can be loaded correspond, to the parts data described on the input forms. Since the unique name of a part begins in column 19, it is recommended that the user incorporate the unique name, along with the part type for the name of the file generated. Although mentioned in Section 2.1, for user convenience, a list of commands and a brief description of the data follows:


$$
\begin{aligned}
\text { *ACCESSORY } \quad- & \text { indicates that data for an engine accessory } \\
& \text { (fan, air conditioner, etc) is to follow. }
\end{aligned}
$$

*DRIVING SCHEDULE - indicates that data, in segment form, describing the particular driving schedule (segment number, acceleration, speed, time, etc) is to follow.
*ROUTE - indicates that data describing the physical route (distance, grade, etc) to be driven is to follow; the grade and road coefficient specifications are from the last, up to the current data point milepost.
*TIRE

- indicates that data for a tire type is to follow.
*REAR AXLE - indicates that rear axle data is to follow.
*TRANSMISSION - indicates that a transmission part name will follow (specifies a list of gears).

Now that a particular part file has been created, the user may load that part and store it permanently on the disk as a core image in a parts base for VEHSIM. The general form is: @FILE. EXT

As long as the user runs the model and loads the file, as above, VEHS IM will automatically put the file, in core image, into its correct parts file (i.e. VSMSLG. BIN, VSMENG. BIN, VSMROV. BIN.

The user may also use a card deck to create new parts and add them to the existing parts.

## 3. SAMPLE SIMULATIONS

This chapter provides sample simulations based on the procedures described in Chapter II. Each mode of operation is preceded by a title. All other OUTPUT is taken from actual runs off a liner printer or remote terminal. Words or phrases underlined (as in the ask mode) are user inputs.


```
FGRTRAN: VSMLIRK
000ES* FARFFMETER NMON=ES,NPFRT=11,NLCM=41
%FTMEQD LINE:DDOES FAPAMETER STFTEMENT GUT OF ORDEF
```



```
COMMTR
[EF|IG
EK
DKETF
IFKDEL
IGKIIR
IIEFFI
F%WE
EP㥒INE
EMTEFP
GETATL
```



```
OFTNEEN LIME:OQUEOG FAFAMETER STATEMENT IIGT OF ORLEP
```



```
MOGEE* FFFFFMETEP MMOI=EE,NFFFT=11,NMOM=41
`FTNSOL LINE:U⿴OEE FFFFMETEE STATEMENT DUT DF OFIEF
%FTMWEN HLFIGD NL FATAL ERFDFS SNII 1 MAENINIG:
SFFEEC
%FTPMVG LIME:GGES4 NHMEEP DF %FEIGELES DGES NGT EDIGL THF HHMEEF OF GONS
THNT: IN IATH GTATEMENT
```



```
INFDIA
I TEFAT
KFTIME
LOCKLiF
MOIT:L
PMDFGFT
FFNIUIT
FFNTFI
FEFONT
M,NGNT
ITFINT
EEFDFI
- Emaf
OHLEM
EHIFTS
ZIMETR
IIMIMT
```




```
OFTMIWEN EIMLPT HQ FATAL EFRCPS AND 1 BIARMINGS
EIMETS
:IOakF
4HLIDE
MELK
METF
EEF:D
ご唯安
LIPK: LCHIINGG
E%IT
. SF'Y YEH:IM
EHミIM SFッED
.IEE USMMRK.FEL
FILE: [EIETED:
\becauseMn!5k.E=に
#-5 \LGGKG FFEEI
FO-% OHEIM
```


### 3.2 INDIRECT SIMULATION



```
*NDLKS.NSM
-OUTPUT अOLKS.DFTES:SI
LPT FILE G:SIVSM.INT,DISF: IEL
```



```
-LIMIT FEINT DFF
- TITLE YOLKSWMADPM IIESEL STITH
* HE サHEEEO YEHIELE
```



```
-LDRKIIF EUHYEFTEF EEFF
- SE EFHA SHIFT LEGIE
-LSE GHFESOSSF TFANEMTSEITIN
- LSE EGL'1 EONWEFTEF
-HE EDL%1 EOHWERTEF
* ISE LFLY1 FICDESEO%
* LSE SIFFIE FIDITE
-MOLIF'Y biEIEHT E%TE.
```



```
*MOIIF'Y EEAF F\IE F З.S00
-MDIIF'Y IISFLACE GC.0ig
* FILIFY El OCOG
-MOLIFY -E - brome
-LIMIT FFIHT gEE
- TITLE EASE LINE GFSE NITH UFEAN FN!I HIGHAN'
```



```
-LIMIT FFIHT GFF
-IEE IIFERHN IFIWINGESHESMEE
[DEK-DFSMEEL: ENMES: SO]
```



```
-LIMIT FFIMT EEGHEHT
- EIMILLATE EAR
-IM
```



## VEHIGLE FEFFDFMGNIE SIMILATIETA 1E－MAF－EI <br> FHISE $?$



AIIITIDPAL FIIF：I：ニTに


| tatale |  |  | total | FEFILENT DF TOTEL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WAFIFELE | CLHITS | Amburt | く6いなこ | GICEL | IIEIEL | IILE ： | －EFAKES： |
|  | TIME | SEE？ | $146 \%$ | 三¢， | E4．4 | E1． | 18.1 |  |
|  | IISTARHE | CMILES | $\bar{i}$ | 47 | こ． 1 | E4． 1 | i． |  |
|  | ETUEFE゙ | （HE－HE） | 1．82 | Es．00 | － | 4.5 | $1 . \%$ |  |
|  | FIEL | くlES | 1.3 | E．i | 45.6 | $1 ¢ .1$ | E．E | $\because$ |

```
ENEPE'Y SUPPL'M
    HF-HE
    (1) ENSINE = = 1.8E 
(4) FOTATINIG INEFTIA = 0.90
BFEFKKIDLMM
FEFICENT ENGINE HF-HF
---------------------
    (1) HCLESSOFIES = 4.ES
```



```
    (3) ELUTEH = 0.0E
    44) SEFF BO% = E.05
    S) IIFFEFEMTIFL = E.E
    G(SIPE SLIF = 0.00
        #+4+5+5=5.nc
        E+3+4+5+5= = . 11
    (7) HEFOLTMMAML LEFGE = 2E.G1
    (B) FOLLING FESIST = ES.E%
            BNETITAL 1-E = 6E.OE
    (E) EFHKES = E4.0%
10) ENGINE MOTOFINIG = E.EO
            OETOTHL 1-10 = 10!.ご
&11% OTHEF ENEEE'r = 0.0!
        TITAL 1-11=100.EO
* E%IT
LFT FILE vOLKS.IFT /DIGF: FRINT
```



```
TDF
ENI DF E:KECIJTIOM
GF! TIME: 1:S0.E# ELFFSEI TIME: 1E:E`.E%
Ex:IT
```



```
[IMF!1:YOLKS=,SEG:1185,TIME:u:Er:0@J
```

```
RINN YEHEIM
YEHSIM CAP 0E(E3) 1E-MAR-81 10:40 JOB% & TTYOTE DSKE :[0413こ,40E]
-HEK
ENTER NUMEEF OF ACCESSOFIES TO EE ISED: }
EMTEF FRFT NAME FIF GCCESSOFY :% 1: LALY1
ENITEF FAFT MAME OF DFIVE CDHMEPTEF TO BE USED: EODYI
ENTEF FHF:T NAME DF GOFST GONNEFTEF TO EE USED: EDGY1
EMTEF FAPT NAME DF IFIYING SCHEIULE TD EE USED: MFFEAH
EMTEFEENINE NIMEEPG& OF ED, FAFT NAME: AND GEAF ASSIENMENTS
: I FEUH00.04E 1 E%4
```




```
ENTEF PAPT NAME OF ROIITE TG EE lISED: ZIGPADE
EMtEF PAPT NAME DF ShIFT LIGIE TI EE LIEED: EPHA
EHTEF FFFT NFME OF YEHIGLE TD EE USEI: YIUPESIG
```



```
    YEH:IM EFF DEES STATISE FEFOFT
IIHLDGYE MOIE - TT`
SIMILLATIDN MONE-CAF
MO FIIN TITLE
ENEINE (1) -FEYAED.04E
DFIVE EONVEFTEP-ROIYI
EOHST GOMVEFTEF-FOCY1
YEHICLE-VHFESO
TPANSMISEIDN - YMFEEOSSF
GEFF: % 1-5G.4S FSEIGNED TO ENIGINE-FEVFIST. D4E
```




```
GEFF : 4-EG.GT BESIGHEI TO ENIGINE-FEVAGO.04E
ACLESSOF%:1-LFL`1
DFIUINE SCHETMLESIIREFNH
SHIFT LOGIC-EFFA
POIITE-2GFFIE
TIFE-%YEHITLE
NO GEAFE LDINED IF
GEFFE BHLQGKEI- 1 E S 4
```




```
TT`' [UITFUIT-DFF
LFTT DUITFIIT-DIM
1O MOIIFISATIOHE
\XiIMILAFTE ? GHIS 'TM,I!: M
EHTEF GEFF NIIMBEFS TO EE LOCKEII LIF: 1 ב̇ z &
EMTEP GEGF MIMEEFS TO BE IMALGCKED:
```




```
MODIFY (HEW Y'RLUE,ITEM: : ב.\XiO,FEEAF:
*MOIIF%rMEN Y'RLUE,ITEM%: GO.G.IIISFL
```




```
-MDIIFY(NEM VFLIJE,ITEM):
-LIMIT FFINT: SEC
TTY GUITFIIT (OM, QFF): DFF
DEPNG: OFF
```

```
    YEHSIM GAF OEGOS STFTUS REFQRT
    IIHLDBIIE MOVE STTY
    BIMILLATIDH MOIE-CAF -DVNFNICMETEF
NO FLIM TITLE
ENHINE 1) -F8UFGEO.04E
IFJWE EOHWEFTEF-EGI%I
EDFST EOP+NEPTEF-ROCY1
YEHIGLE-WHFE:G
TFANHMISSION - qHPREOESF
GENF: 1-GE.45 AGSIGNEI TD ENSIME-FEWFIOO. I4:S
GEFF: E-G1.G4 GSEIGNEI TD ENGINE-FEVNGO. OAS
```




```
FITEESDF'% :% 1-LHL'r1
IF:I%INHIGOHEIULES-BFE:NH
SHFT LDGIに-EFFA
FOITTE-%INMD
TIFE-%VEHICLE
GEAPS LOCKEI GIF- 1 e 3 4
MD GEFFG UMHOEKEI
LIMIT FFIPT-SETON 10.OMgOLO
```



```
TTY DIITFIIT-DFF
LFTT DITFIIT-DNT
E1 MOIIFIEI FFOM
GE MOIIFIED FFOM
FEEFF MDIIIFIEI FFOM
UEIGH MOTIFEIEI FEOM
```




```
\PsiEHIELE FEFFDFMMNIEE SIMLSHTIDN 1S-MAR-E1
    FHISE
```

RUJN TITLE =

HVG SFEED $\quad=19.7 \mathrm{MFH}$
GIIIITIDFAL FIIN DATH


```
TDTHL` TDTBL FEFILENT DF TOTAL
```





```
        EPEFEO% UHF-HF` 1.EO
EHEPISY ELIFPLG
\begin{tabular}{|c|c|c|}
\hline & & HP－HF \\
\hline （1） & ENIEIME & 1．32 \\
\hline E & KINETIG ENEFG＇r & 0.19 \\
\hline 3 & FOTENTIAL EYEFEG＇i＇ & 0.00 \\
\hline 4 & FOTATIMİ INERTIA & 1， 00 \\
\hline
\end{tabular}
EFEFA IDOIT
FEF：CENT EMISIHE HF：HF
\begin{tabular}{|c|c|c|c|}
\hline 11. & HELESOFIES & \(=\) & 4.6 \\
\hline E & TDFOME EDNVEFTEF & ＝ & ¢，¢ ¢ \\
\hline 3 & FLUTEM & ＝ & リ．\({ }^{\text {OV }}\) \\
\hline （s） & EEFF ED\％ & ＝ & こ． \\
\hline E & IIFFEF：ENTIFL & ＝ & － \\
\hline ©） & TIFE LIF & \(=\) & 19． 110 \\
\hline & \(5+4+5+6\) & ＝ & E． \(\mathrm{j}_{5}\) \\
\hline & E＋\(+4+5+5\) & ＝ & 5.11 \\
\hline \(\bigcirc\) & FEFOIVMAMIE DFEIS & ＝ & E\％－ 1 \\
\hline © & \begin{tabular}{l}
FOLLIrtig PESIST \\
－UETOTAL 1－-
\end{tabular} & ＝ & \[
E
\] \\
\hline 13\％ & EFFKE－ & ＝ & E4． 07 \\
\hline ¢19 & \begin{tabular}{l}
ERHIIPME MOTOFITHE \\
SIETATFL 1－90
\end{tabular} & ＝ &  \\
\hline （11） & THEF：ENEFE＇ & \(=\) & \\
\hline & TOTAL 1－11 & ＝ & OU．ジ̇ \\
\hline
\end{tabular}
\(-11-E\)
FHFPT TYFE：IIF＇I＇
EHTEF FHFT NHME DF UFI \(\because I M E\) STHEIULE TD EE IEEI：EFRHM＇
FHF：T TIFE：
－MOIIF：
```




## UEHICLE PEPFRFMMANEE SIMILLATIDH 18－MAR－ 81

FUliH TITLE $=$
SEHEIULE FYEFMGE


AIIITIGNFL FIN INTA



TDTALS

| VAF IAFLE | UNITE | TDTAL FMDINHT | SFFUISE | ERCENT FCEEL | $\begin{aligned} & \text { DF TDTAL } \\ & \text { DECEL } \end{aligned}$ | IDLE ？ | （BFARES） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TIME | （SECS | 769.0 | 55.1 | ごこ．5 | E1．s | 0.7 |  |
| IISTANCE | （MILES） | 10.3 | 58.1 | 20．9 | 21．0 | 0.10 |  |
| EMEFS＇ | （HF－HF） | E．S $¢$ | 55.6 | 3 B | 10.5 | 0.1 |  |
| FUEL | （LEE） | 1.49 | 56.1 | 28. | 15.1 | 0.1 | 1.7 |

```
ENEFGY SHPFLY
\begin{tabular}{|c|c|c|}
\hline & & HP－HE \\
\hline （1） & ENISINE & E． 58 \\
\hline E & KIMETIC ENEFG\％ & 0.010 \\
\hline 3 & FOTEHTIAL ENERGY & 0.00 \\
\hline （4） & ROTATINIS IHEFITIA & 0.010 \\
\hline
\end{tabular}
BPEFKDOLIN FEPCENTT ENIEIHE HF-HF
```



```
－E×IT
LFT FILE IOEYSM.INT IIGF: FFFINT
LFT FILE IISFE : OUEYSM.IHT[041:E:40E]<100%,DISFQEE:FRIHT
STOF
EMI DF EX:ECIITION
GFIL TIME: E:EO.OG
EXIT
ELHFSEI TIME: シ4:こア.ES
```


## VEトSIM CAR 06(22) §1A1LS P.EPCRT

```
CIALLGLE MOCE /TTY
SIMLLATICN MCCE-CAR /CYNAMLMETEF
AC FLA TITLE
ENGINE(1)-FEVAGO.C48
CRIVE CONVERTER-COCYI
CCAST CCNVERIER-COCYI
VEHICLE-VGRERO
TfAASPISSICA - VWMRBOSSF
CEAR 1-G3.4S ASSICNED TU ENGINE-FQVAGO.048
GEAR 2-G1.54 ASSICAEC TC ENGIAE-FBVACO.048
GEAR 3-C1.2S ASSICNED TO ENGIAE-F&VAGO.04E
GEAF 4-GO.S7 ASSIGAEC TO ENGINE-FOVAGO.048
ACCESSORY I-LALYL
CFIDING SCHECLLE-UREAN
SHIFT LCGIC-EPA&
RCUTE-%OYAC
TIRE&VEHICLE
CEARS LCCKEC LPE 1 2 3 4
NC GEARS LNLCCKED
LIMIT FRINT-SECON 10.00COO
CEBLC-CFF C.OCCCCOOE+CC O.COCOOUOE +00
ITY OLTPUT-CFF
LFT CITPUT=CA
C1 MONIFIED FRCM . SCCCE-02 TC .CCCCE-02
C2 MUCIFIEL FREM .5000E-04 TO . 5000E-04
REAR MODIFIEL FROM 3. SOC TC 3.SOC
WEIGF MCCIFIEC FROM 237E. TC 237E.
OISFL MOOIFIED FRCM 88.75 TC 90.00
```

0
0
0
0
0








$\qquad$
$\qquad$ ＊$A+A B+E O^{\circ} \mathrm{J}$ W
0
0
0
0
0
0

0 | $\sim$ |
| :---: |
| $\sim$ |
|  |
|  |


 C1．SAtititita － 0
－
0
－
-0
-0 $8 w$
0
0
0
0
0
0









3i Ji yivi dif 7dt 9dH


















CK!
$\qquad$ * .0 1c. 0 i C. $C$ (t) titate - + EREACO $0^{\circ} 0$
 0.
0.
0
0.
 0.
0.
0
0
0
 .
.
-
-

-\begin{tabular}{ll}
$w$ \& $n$ <br>
$u$ \& \multirow{2}{*}{} <br>
$\vdots$ \& 0 <br>
0 \& 0 <br>
0 \& 0

 

\hline $5^{\circ} 1$ \& 0.0
\end{tabular}

 0
0
0 W
0
0
0
0
0



 *
*
*
B
0
0
0. W0
W0
W
W
$\vdots 0$
0
0


























SHIFT FRECLEACY CATA EV LEg,


GEAF TIME CISTKIBUIICA


## 3984

VFhILLE PEFFCRNAMCE SINLLATICN IB-RAR-甘I

$$
\begin{aligned}
& \text { RIN TITLC } \\
& \stackrel{\rightharpoonup}{\bullet} \\
& \begin{aligned}
& \text { WhU SP FLEL CUNS }=0.24 \mathrm{LESAPP-tR} \\
& \text { AVGSPEEC }=19.7 \mathrm{MPH} \\
& \text { AV SP }
\end{aligned} \\
& \begin{array}{l}
\text { FLEL ECCNIMY }=\equiv 5.34 \mathrm{MPG} \\
\text { WCSK FEI MILE }=0.24+P-\text { FR/MI }
\end{array} \\
& \text { fVG SPEtc } \\
& \text { schecule avefages } \\
& \text { acoit icnal rla data } \\
& \text { DFIVING SCREDULE AAME = LnHAA } \\
& \text { CCAVERTE? MAHE }=\text { CCCYI } \\
& \text { WEICRI ILBSI }=2375 . \\
& \begin{array}{r}
50.0
\end{array} \\
& \begin{array}{ll}
\text { KOLIE MARE } & =\text { YCYNO } \\
\text { EAGINE NAME } & =F 8 \text { VAGO.O4 } \\
\text { SHBF LCGIC NAME } & =\text { EPAK }
\end{array} \\
& \text { SIRCKE IINCMESI = } 2.89 \\
& \begin{array}{l}
\text { SEARE AXLE FATIC } \\
\text { FLEL DENSITY ILE }
\end{array} \\
& \begin{array}{l}
\text { TINES }=4.0 C \\
\text { N/V }=45.10
\end{array} \\
& \text { TCTALS VARIABLE IUHIISI AMCLAL CCRLISE ACCEL CECEL } \\
& \text { ICLE (EFAKES) } \\
& \left\lvert\, \begin{array}{lll}
0 & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right. \\
& \text { PERCENT ENEINE PP-HR }
\end{aligned}
$$

 SCOC 1CC.G $116 . C$ 12C.0


## 

```
ojalcgle mide dtjy
Sinuletica mcce-cer ocynamcmetef
NC FUN TITLE
engine(1)-FEVAGO.34B
ckive convegter-coctl
CCAST CCNVEFTER-CCCYl
vEFICLSVWRBEC
tfansmissicn - vwregussf
CEAR # l-G3.45 ASSIGNED TC ENGINE-FGVAGC.O4G
gEAN 2-Gl.S4 ASSIGNEDTC ENGINE-FGVAGO.04a
GEAF 3-Cl.2S ASSIGNED TO ENGINE-FQVAGO.O4E
geaf # 4-G0.c.7 aESIGMEC TC ENGINE-fgVAGO.048
aCCESSCRY l-LALYI
criving scheclle-efarhy
SHIFT LCGIC-EPA4
RCLTE-SOYNC
TIRE-2VEHICLE
CFAPS LCCKEC UP= L 2 3 4
NC GEa:is lNLCCKED
LIMIT FRINT-SECON IC.CCCOO
OEBLC-CFF C.CCCCCCCE+CO U.UOCOOJOE$00
TTY CLTPUT-CFF
LFT CITPUT-CA
Cl PODIFIED FRCN .SCOOE-O2 TL .ECCCE-02
C2 MCDIFIEL FRCM .5000E-U4 TC : SOOOE-04
REAR MODIFIEC FRCN 3.500 TC 3.500
wEIGt MEOIFIEC FROM 2375. TC 237E.
OISPL MODIFIED FRON 88.S5 TC SO.00
```

LSIAG PCLJE ICYAC
SR



























1 t.日)


HC.C IIC.C 120.0

0.0 | c.0

A directory lets the user know which parts are available. The following example shows the user deleting a part and again adding the same part. A listing of the part is not shown here, but can be listed.
FLH MEHEIM


 *IEL
FHF:T TYFE: BHI

FHFTE IELETEL FFOM UEHEIN FAFTE LIATA EHEE:


## FHR:T TYFE:

## 

- hift lugic
 TIUMF
?IUUIF ?
- IIIfligue

 N10.
FHRT TMFE: $\operatorname{BHI}$
EHTER:

```
.TYF %GLK\Sigma.ひSp
-CHTF\iT धUL&こ.IFTEミ。こう
-LIPIIT FFIMT GFF
-TITLE YOLKEbGGCM, I.IESEL ETIG;
-HEE vIGFESG धEHIILE
```



```
-LUIKIJF ELMMEFTEF GEFFF I E S 4
*ISE EFFA SHIFT LCEIS
```



```
*ISE ECINI ECNEETEF
*SE EEGI EGFIGEFTEF
-LEE LFLII FICESEDF'Y
- EE EGNGIE EOLTE
* MGIIF'MEIEHT ESTE.
```



```
-NLIIF' FEGE EYLE F E.OH%
- MEIIF'r IISFLGEE SO.GO
* MLEIF' E1 .j6.50
* MLIIF' DNT EE DO0.0.
-LIMIT FFINTT EFF
-TITLE EESE LINE GOEE MITH UFEGN, F!,E HIEhwo
```



```
-LIMIT FFINT EFF
-LE BFEGNM IFI'IME ごGEILLLE
-LIDIIT FEIMT EEGOENT
*IM|LFTE EFF
-LIHIIT FEIPGT GFF
```



```
-LIMIT FEIMT EEGMEMT
- Imbllite EAF EIFLDElGE
LIMIT FFIMTT GFF
-TITLE I-SE TCFSFEEI, SMIFT LEGII=E.nCTEi.ir
*SE EMETEMTG SHIFT LEGIG
-MELIF' TOFSFEEL
    1.0!L
- USE TGFSFEED IFIVINE SGHEIGLE
-LIP:IT FFIMT
-LIDiIT FFIMT
- IM&G隹E
    UFF
-LIMIT FFIMT DFF
```

```
TE %OLFS.ETL
E!r Gorej
nT&&
.FI|H 断F:SEMI
**4に
```



```
-Flor %ELSIMi
M%ELK
.IFIEFFEF%.EGTE IRCMEA
ESIT
IGNEG::
.ELE:E
.FHM ELMIG:SEMI
**曾 
```



```
.FFIMT.IIS:DEL &ELKE.DFT ES,Oj
.FFIHT-IIE:LEL MCLKS.LES
```

Eッま


18-Mar-R8
VEHICLE DATA ( VWRA日O , OLI) VEHICLE DATA FORHAT THAT INCLIUFS TIHE DATA.

no axle spin loss data specified


으Nㅇ

| $\begin{aligned} & 0 \text { 읃 } \\ & \text { in M } \\ & \text { inco } \end{aligned}$ | $\begin{aligned} & \text { ccec } \\ & \text { © } \\ & \text { in } \\ & 0 \end{aligned}$ | $\begin{aligned} & 0 \text { © C O } \\ & 0: \mathcal{O} \\ & 0=0 \end{aligned}$ |  |  | $\begin{aligned} & c c i c \\ & 0 \\ & 0 \\ & i=0 \\ & 0 \end{aligned}$ | －co「のn in べmio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ccic | 웅으은 | 으든 | $\begin{gathered} \circ \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ | ceco | 으응 | $80$ |  |
| $\cdots \mathrm{NOO}$ |  | －00 |  |  | $\rightarrow \boldsymbol{m}$ | － | ～NN |
|  | 용 |  |  |  |  |  |  |
| mッ＋！ | $0 \div 5$ | － | กットn | $\text { ㅇö } 0$ | $-800$ | M요 | 90no |
| ＋NOO | $\underset{\sim}{\infty} \times 0$ | $\cdots=0$ | $\rightarrow 0$ | － | amº | 「のロー | $\square$ |
| －Cco | 옹ㅇㅇㅇ | 응앙 | 응ㅇ |  | 웅ㅇㅇㅇ | 읃ㅇㅇ | 으울 |
|  | $\bar{F} 05$ | $\infty=0$ | $0.00 n$ | metr | $0+\infty$ | －mir |  |
| moo | $\stackrel{\sim}{\sim}$ |  |  |  | $0 \times$ |  | $\underset{\sim}{\mathrm{N}}$ |
| －coc | －80 | － $00^{\circ}$ | ㅇoro | 0000 | 0000 | ceos | OOO |
| －¢ ¢ ¢ | －an | $\because \because 0$ | － 0 | $90 \%$ ． |  | 「回以 |  |
| ñoo | $\underset{\sim}{0} 0$ | －0 | $0 \rightarrow 00$ | のート0 | ＋mo | $\cdots$－ | anN |
| ㄷㅇㅇㅇㅇㅇ | ㅇㅇㅇㅇ | － 0 | ㅇㅇㅇㅇ | $00^{00}$ | － 00 | $00^{\circ}$ |  |
| 9－¢！ | $\cdots+\infty$ |  | トのnn |  | $\infty 0$ | 0 |  |
| Nooo | － $\mathrm{NOO}^{\circ}$ | 0 O | $-00$ | －0 | $\mathrm{mm}^{m} 0$ | $\cdots$ | ¢ N N |
| －000 | 0000 | 0000 | 0900 | 0006 | $00^{\circ} \mathrm{C}$ | $00^{\circ} 0$ | ceco |
| $0=-6$ | ¢． |  | $\cdots$ |  |  |  |  |
| NへO | $\cdots 0^{\circ}$ | $10^{\circ}$ | $0-00$ | －00 | $0^{\circ}$ | $\cdots$ | mio |
| cooo | 0000 | －080 | －000 | 0000 | －000 | ㅇㅇㅇ | － $0<$ |
| $9 \rightarrow-$ | ¢m「に | 7890 | $\cdots \mathrm{mm}$ |  | かワもの | － | 8日の |
| $\cdots 0$ | NOO | $\cdots-0$ | $\infty-00$ | ¢－ペ | $\bigcirc 0^{\circ}$ | $\because \sim$ | $\cdots$－${ }^{\circ}$ |
|  |  |  |  |  |  |  |  |
| $0 \cdot 07$ | $\cdots 0$. | $\infty 00$ |  |  |  |  |  |
| Noo | $\therefore 0^{\circ} 0^{\circ}$ | $\therefore 00$ | $\cdots 0^{\circ}$ | －－ | ¿NOO | $\bigcirc \mathrm{CO}$ | －${ }_{\text {－}}$ |
|  |  |  |  |  |  |  |  |
| －-8 | roion |  |  |  | ㅇm유N | 앙ㅇㅇㅇ | 웅웅 |
| $\bigcirc 0^{\circ} 0^{\circ}$ | $i_{n}^{0} 0^{0}$ | $\bigcirc 0^{\circ}$ | －－ $0^{\circ}$ | べャ＊ | －$\sim_{0}^{\circ}$ | $\dot{\sim}$ ¢i－ |  |

> STROKE
> DISPLACEMENT－


10 SPEED POINTS SPEED（RPM）』 100.00


FUEL RATE（LB／HR）
MANIFOLD VACIUM（IN－HG）
TOROUE（FT－LB）
TOROUE（FT－LB）
FUEL RATE（LB／
FUEL RATE（LB／HR）
THROTTLE（DEGREES）
THROTTLE（DEGREES）
MANIFOLD VACIUM（IN－HG）
MANIFOLD VACIUM（IN－HG） SPEED（RPM）： 800.00

TOROUE（FT－LB） FUEL RATE（LB／HR）
THROTTLE（DEGREES）

MANIFOLD VACUUM（IN－HG） TORQUE（FT－LB）

FUEL RATE（LB／HR）
THROTTLE（DEGREES）
MANIFOLD VACUUM（IN－HG）
SPEED（RPM）$=1000.00$ SPEED（RPM） 51000.00 TURGUE（FT－LB）

THROTTLE（DEGREES） RORGUE（FT－LB） TOROUE（FT－LB）
FUEL HATE（LB／HA）
THROTTLE（DEGREES）

THROTTLE（DEGREESI
HANIFOLD VACUIIM（IN－HG） SPEED（RPM）\＆ 1650.00

TOROUE．（FT－LB）
FIEL RATE（LB／HR）
THROTTLL（DEGREES）
HANIFOLD VACUUM（IH－HG）

[^0]|  | $\begin{aligned} & c o c e \\ & n_{n}^{c} c_{0}^{\circ}= \end{aligned}$ |  |  | 옹ㅇㅇㅇ $\operatorname{Nin}^{\circ}$ |  |  | $\begin{aligned} & \text { coede } \\ & \text { ingein } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 융ㅇ․․․ | ¢ ¢ ¢¢¢¢ ¢ | 응： |  | 당용 | 응¢ㅇㅇ앙 | coioc | ¢ ¢ ¢ cce | 응ec |
|  | $\square^{\circ} \infty^{\circ} \mathrm{N}$ | －ivio | - シ®i | ヘップ |  | $\dot{\sim} \dot{\sim}^{\circ} \underbrace{\circ}{ }^{\circ}$ |  | $\dot{\sim} \dot{0} \dot{0} \dot{\circ}$ |
| coio | 웅요요 | 응욷 |  | 앋둥응 | 응요두¢ | 옹ㄷㄷ응 | 운요용 | ¢응¢ |
|  | $\text { - } \dot{\sim}$ | ¢心が | $\dot{\sim} \dot{\sim}$ | ¢0¢べへ | $\dot{C-m i x i}$ | $\dot{\Phi} \dot{\Phi} \dot{m}$ | ゅジャ் | ごらが |
| 옹ㅇㅇ | cosin | 욷읃 | 요욭ㅇㅇㅇ |  |  |  |  | ¢으ㄷㅡㅢ |
| nin! | ペロ் | $\dot{\sim}$ | $\operatorname{man}^{\circ} 0^{\circ}$ | nio |  | $\dot{m}$ | $\dot{\Phi} \dot{\square}$ | 发家： |
| 아¢ㅇㅠㅠ융 | 응ㅇ앙 | 앙유ㅇㅡㅡㅇ | 뎅ㅇㅇㅇㅇ | 웅웅 | Esisis | 웅ㅇㅇ |  | COEE |
| バゥ¢゙ | －¢ ¢ | べがi | －$\square^{\circ}$ |  | －¢ ¢ | ペ¢ | ¢ig |  |
| 둥응 | 900．0is | 듕웅 | ㄷㅇㅇㅇㅇ | 용ㅇㅇㅇㅇ |  | 우읃 | 욛ㅇ | O¢¢ |
| $\dot{\circ} \times \dot{c}$ |  |  | －¢ ¢ ¢ |  |  | が号が | －ペ் | のめ゙が |
|  |  |  |  |  |  |  | i응 | Ceise |
|  | $-\infty$ |  | $\dot{m} \infty \dot{\sim}$ | $\therefore \dot{\circ}$ | $\dot{m} \dot{\sim}$ | ○らing |  | $\bigcirc{ }^{\circ}$ |
| 우우ㅇㅡㅢ | 웅ㅇㅇㅇㅇㅠ | 잉ㅇㅇㅇ읃 |  | 응우웅 | 응ㅇㅇㅠ | 잉ㅇㅇㅇㅇㅡ․ | 붕아응 | 웅ㅇㅇㅢ |
|  |  | $\dot{m}$ | $\dot{m} \dot{m} \dot{0}$ | －minco | $\dot{m} \dot{\sim}$ | 为がi | $\dot{m}=n \dot{n}$ |  |
| 0 등ㅇ | coinco | O\％isio | ㄷ．0응 | 유¢융 | －cisim | －¢ | 둥응 | ¢둥ㅇㅇ응 |
| －rioㅇ | $\dot{\sim}$ | $\cdots \mathrm{Cosio}$ |  | $\dot{\sim}$ |  | ○oinm | $\bigcirc{ }^{\circ}{ }^{\circ} \mathrm{O}$ | －0¢ |
|  | 0000 | 0000 |  |  |  |  |  |  |
|  | $\cdots \square$ | O－n | ¢0\％\％ | －R「\％ | $\cdots$ | 「－m？ | $0 \% 08$ |  |
| －N－ | －ine－ | ¢～N | －0¢ | シャッペ | $\stackrel{\sim}{\circ}$ | ${\underset{0}{\infty}}_{0}^{\circ}$ | $\cdots$ | ペ |

$18-\operatorname{Mar}_{-81}$
SPEED（HPM）$=2000.00$


## － <br> THROTTLE（DEGREES）

MANIFOLD VACUUM（IN－HG）
TORGUE（FT－LB）
FUEA．RATE（LB／HR）
THROTTLE（DEGREES）
HANIFOLD VACUUM（IH－HG）
SPEED（RPM）E 3500．00
TOR（JUE $(F T-L B)$
FUEL RATE（LB／HR）
THROTLE（DFGREES）
MANIFOLD VACIJUM（IN－HG）
TOROUE（FT－LB）
FIEL RATE（LB／HR）
THROTTLE（DEGRFESS）
MANBFULD VACIUM（I
MANIFOLD VACIUM（IN－HG）
SPEED（PPM）$=4500.00$.
SPEED（PPM）$=4500.00$
TOROUE（FT－LB）
FIIEL RATE（LB／HR
IHRUTTLE（DEGREES）
MANIFOLD VACUUM
MANIFOLD VACUUM（IN－IIG）
TORQUE（FT－LB）
FLEL RATE（LB／HR）
THRGTTLE（DEGRCES）
MANIFOLU VACIUM（IH－HG）




ジロー－№́


$\therefore 0^{\circ \circ} \dot{\circ} 0^{\circ}$


icce
0.50
0.0
0

용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ


18－Mar－81

```
18-Mas-81
    SHIFT LOGIC , EPA4 )
SHIPT LOGIC FOR 4 GEAR TRANSHISSION FOLLOWING EPA TEST PROCEDIJRE
THIS TRANSMISSION HAS 4 GEARS
UP SHIFT 1 - 2 SHIFT IIME =0.500 SEC
    THROTTLE (PCT WOT)
    2.00 100.00
    VEHICLE SPEED (MPH) 15.00 15.00
DOWN SHIFT 2 - SHIPT TIME = 0.500 SEC
    THROTTLE (PCT WOT) 0.00 100.00
    VEHICLE SPEED (MPH) 10.00 10.00
UP̈SHIFT 2 S SHIFT TIME = 0.500 SEC
    THROITLE (PCT WOT) 0.00 100.00
    VEHICLE SPEED (MPH) 25.00 25.00
DOWM SHIFT 3 - 2 SHIFT TIME = 0.500 SEC
    THROTTLE (PCT WOT) 0.00 10N.00
    VEHICLE SPEED (MPH) 20.00 20.00
UP SHIFT 3-4 SHIFT TIME = 0.500 SEC
    THROTTLE (PCT WOT)
```



```
DOWM SHIFT 4- S SHIFT TIME = 0.500 SEC
    IHROTTLE (PCT WOT) 0.00 100.00
```

TRANSMISSION DATA (VWRBBOSSP )

VOLXSWAGON RABBIT 5 SPEED. 2 OVERDRIVES

18-Mar-81

```
GEAR DATA (G3.45 )
```



## NO COMMENT



18-Maz-81
GEAR DATA (G1.94)

NO COMMENT

| GEAR FATIO $=1.940$ | INPUT INERTIA $=0.000$ FT-LB-SEC-E2 |
| :--- | :--- |
| EFFICIENCY $=0.980$ | OUTPUT INERTIA $=0.010 \quad$ FT-LA-SEC**2 |

NO GEAR SPIN LȮSS DATA SPECIFIFD

## 18-Mar-81

```
GEAR DATA (G8.29 )
```

NO COMMENT


NO GEAR SPIN LOSS DATA SPECIFIED

8-Mar-81
GEAP DATA ( 60.97 )

NO COMMENT

| GEEAD RATİ | ${ }^{-0.970}$ | INPUT INERTIA | 0 | FT-LA-SEC**2 |
| :---: | :---: | :---: | :---: | :---: |
| EFPICIENCY | = 0.980 | OUTPITT INERTIA | 0.010 | FToLA - SEC * 2 |

NO GEAR SPIN LOSS TATA SPECIFIED

18-Mar-8:
GEAR DATA ( G0.76 )

NO COMAENT

GEAF RATIO : 0.760
INPUT INEKTIA : O-0NO FTOLROSEC*2
EFFICIENCY $=0.980$ OUTPIT INERTIA 0.010 FTOLAOSECE®2

NO GEAF SPIN LOSS TATA SPECIFIED
$n .070$
1.000
2530.000
155.641




18-Mar-81
DRIVE CONVERTEH DATA ( COUDYI
11. INCH DRIVE CONVERTER FOR 1973250 L6
pump inertia





CONSTANT INPUT TORQHE $=200.00$ LR-FT

.920
.000
.000
.089
nin
$0-$ -
0.000
2.150
1700.000
0.000

DIAMETER a $11^{\prime \prime} .0$
SPEED RATIO
TORQUE RATIO
INPUT SPEED
INPUT SPEED
K-FACTOR
SPEED RATIO
TORQIJE RATIO
K FFACTOR
$88-\mathrm{MaF}-81$
CÓAST CONVERTER DATA ( CÓCYI,
81. BHCH COAST CONVERTER
DIAMETER = 11.0


\section*{alternator input losses <br> 

| SPEED <br> (RFM) | TORQUE (LB-FT) |
| :---: | :---: |
| -0.00 | -0.00 |
| 650.0 | 1.210 |
| 1190.0 | 0.840 |
| 1830.0 | 0.600 |
| 2480.0 | 0.490 |
| 3000.0 | 0.190 |






OLUTE
UCITY
0.00
15.00
26.00
$\begin{array}{lll}\text { RELATIVE RELATIVE PASSINR ABSOLUTE } \\ \text { TIME: } & \text { DISTANCE CLEARANCE NILEFOST }\end{array}$
$\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ n & i & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
throttle:
HOLD
GEAR

CERCENT AND HOLD
WOT THRUTTLE
CONSTANT HEER WOT
26.00
0.00
23.00
0.00
13.00
21.00

| $\circ$ |
| :--- |
| $\circ$ |
| $\circ$ |
| $\circ$ |

                                    25.00
                                    0.00
                                    \(\stackrel{\circ}{\circ}\)
                                    :
                                    CONSTANT
    acceler



```
    VEHSIM CAR O6(23) STATUS REPORT
    BATCH HODE --- /PTY
    SIMULATION MODE-CAR /DYNAMOMETER
    gun tITLE-BASE LINE CASE WITH URAAN AND highwy
    ENGINE(1)-FBVAGO.048
    DRIVE CONVERTER-CODYI
    COAST CONVERTER-COCYI
    VEHICLE-VWRBEO
    TRANSMISSION - VWRB8OSSP
    GEAF :-G3.45 ASSIGHED TO ENGINE-FAVAGn.n48
    GEAR 2-G1.94 ASSIGNED TO ENGINE-FRVAGO.049
    GEAP - 3-Gi.29 ASSIGNED tO ENGINE-FqVAG0.04a
    GEAR % 4-G0.97 ASSIGNED TO EMGINE-FAVAGO.049
    ACCESSORY IOLALYi
    DRIVING SCHEDULE-URBAN
    SHIFT LOGIC-EPA4
    ROUTE-IDYNO
    TIRF.-&VEHICLE
    GEARS LOCKED UPa 1 2 3 4
    NO GEARS UNLOCKED
    LIMIT FHINT-SEGME 0.0000000E+00
    OEBUG-CFF 0.0000000F+00 0.0000000E+OO
    ITY OUTPUT-OFF
    LPT OUTPUT=ON
    CI MODIFIED FROM .9000E-02 TN .9000E-02
C2 MODIFIED FROM :5000E-0% TO .50NUE-04
REAR MODIFIED FROM 3.900 TO 3.900
WEIGH MODIFIED FROM 2375. TO 2375.
DISPL MODIFIED FROM 98.95 TO 90.00
```

| 0.0 | 0.00 |
| ---: | ---: |
| 0.0 | 0.00 |
| 0.0 | 15.09 |

$\qquad$
 *
 .
-
-
$\sim$ 0
0
0
0
0
0
0 ©
 8
0
0
0
$\cdots$
0 0
0
0
0
0
0
0
0 *
-
-
0
0 0
0
0
0
0
0
00 0
0
0
0
0
0
0
0 -0
-0
-
$=0$
$=0$
 $\quad 0$
0
0
0
0
$0 . m$
$\cdots$
$\infty$
$\infty$ $c e$
0
0
$m$
$\cdots$
$\cdots$ EM
0 n
0 *
*
*
-
©
$c$ -0
0
0
0
-0
0
-0
-0

 30
00
$c=$
$c=$
 $E E$
0
0
$=0$
$=0$
$=0$ 6
0
0
0
0
-0
0
0
0








 $\therefore \dot{\sim}$





































SHIFT FREUIJENCY DATA BY GEAR


> run title a base bine case with lirban and highwy


## adoitional run data

VEHICLE PERFOHMAHCE SIMILATION 1日－HッTー日

## avg speen $=19.7$

 $\begin{array}{ll}\text { ROUTE HAME } & =\text { ETYNO } \\ \text { ENGINE NAME } & =\text { FQVAGO．04a }\end{array}$ SHIFT LOGIC NAME STROKF（INCHES）AEAR AXLE RATIO GEAR AXLE RATIO
f（UEL DENSITY（LR $N / V=45.10$
totals TOTAL CRUI PERCENT OF TOTAI，
VARIABLE（UNITS）AMOUNT（CRUISE ACCEL DECEL IDLE ）（BRAKES）



PEHCENT ENGIHE HP－HR
EHERGY SIPPLY
breakdown
breakdown of time spent on various darts of engine. map
$90.0 \quad 100.0 \quad 110.0 \quad 120.0$
i-


[^1]BATCON version $102(2067)$ running volks sequence 1554 in stream
InDut from DSKR；VOLKS．CTL（4132．402）
Outpué to DSKRsvoLks．LOr（4132．402）
Job parameters
T1me：00：25ion uniqueives Restartino Outputilog
．LOGIN 4132／402／DEFER／SPONL：ALL／TIME：950U／LOCATE：9／NAME：MDOLAN＂ JIIR 21 ISC DECsystemioA v8 TTYi 25 18：00 1R－Mar－8i Wer
．．RUN COMABSEND

Send Ēo whöm？＊．402
t No suen animal
Send to whom？Startina simulation of Vulks．VSM
so suen andmal
Send to whom？
．．RUN VEHSIM

VEHSIM CAR U6（23）18－Mar－81 18：U0 JOR： 21 TTY125 DSKB ：〔04132．4の2］
－PVOLKS
－OUTPUT VOLKS．DAT（3，3）
LPT FILE DSKR ：021VSM．DAT\｛U4132．402］＜900＞／UISRDSEiSAVE
－LIMIT PRINT ÓFF
－TITLE VOLKSWAGON DIESEL STIDY
－ISE VWRBRO VEHICLE
－USE FGVAGO．048 ENGINE i 1234
－LOCKUP CUNVEHTER GEAR 1234
－USE EPA4 SHIFT LOGIC
－USE VWRBBUSSP TRANSMISSION
－USE CODYM CONVERTÉR
－USE COCY1 CONVERTER
GUSE LALYi－ACCESSORY
－IJSE ZGRANE ROITE
－HODIFY WETGHT 2375.
－MODIFY OYNAM $\quad 6.8 \mathrm{CO}$
－MDDIFY REAR AXLE R 3．300
－IDDIFY $\quad$ IISPLACE 90.00
－HODIFY CI ．0090
－MOUIFY C2 ．000の5

LIMIT PRINT OFF
＊TILe base line case hith thaan and hichwy
IUPBAN AND HIGHWAY ONLY
LIMIT PRINT ÓFF
－USE URRAN DRIVINE SCHEDULE
［DSK－DRSANSEC： $2 / N S E G: 50]$
［DSK－URS／NSEC：3／NSEG： $15 / L A S T$ SF．CTInH］
－HIMT PRINT SEGMENT
－SIMILLATE CAR DIALOGHE
［s］miJlatifg）
［REACHED INITIAL CNNOITIDAS］
F．SEG： 1 CIMM： 20.00 CIMD： 0.0 OU MPII： 0.0 CPUS： 7.00 CFUT： $0 . C O$


18j09:16 USER



```
    18:37:59 USER
    18:37:59 USER
    18:37:59 USER
    18:37:59 FALSE
    18:37:59 USER
    18;39%00 USER
    18:38:00 USLR
    18;39:00 USER
    18:38:00 USER
    18:30:00 USEF
    18:38:00 USER
    18!38:ЯO USE゙R
    18:38:C0 MORTK
    18:3日:vO MOHTR
    18:38:VO MONTR
    18:38:00 BLABL
    18:38:00 MONTH
    18:38:v0 MONTR
    18;38:vO MONTR
    18:38:00 MONTH
    18:38:^0 USER
    18:38:01 ISER
    18:38:01 USER
    10;3日:01 USER
    18:38:01 USER
    10:38:01 USER
    18%38:f1 USER
    18:30:01 HONTR
    18:38:02 USER
    18;38:C2 MONTH
    18:38:42 MONTR
    18:38:03 USER
    18:38:03 MOHTA
    10:38:03 MONTR
    18;38:06 USER
    18:38:36 USE.P
    18:38:06 USER
    18:38:06 USER
    18:38:06 USER
    18:39:06 USER
    18!38:06 USER
    18:38:06 USER
```

```
END OF VEHSIM CONTROL FILE DSK :VOIK.S.VSM 104132.1021
*
.IF(ERRUR).GOTO DONE4
EXIT
LPT FILE DSK :VOLKS.DAT {ONOO3.O&3l<iOn>/DISPOSE:SAVE
STOP
END OF EXECUTIOis
CPU TIME: 7:20.22 ELAPSEN TIME: 37:24.40
EXTT
DONE4::
.Closc
..run comnisend
Send to wnom? *.402
sHo suen anlmal
Send to whom? FFinisher VOLKS.VSM - printina
#Ho suen anlmal
Send to whom?
-.PRINT/DIS:DEL VULKS.INAT {3,3}
[LPTOI:VOLKSE/Sea:1623/Limit:245, (File)
..PRINT/DIS&DEL VULKS.LOG
[LPTOI:VOLKS=/Sea:1624/Limiti77, (File]
-KJOR/AATCH
Job 21 User DOLAN \4132.402]
Loqged-off TTYi2S at 18:34:n6 on 1R-Mar-R!
Runtlme: 0;07:21. KCS:24221. Connect time: 0:3R:03
Dlsk Reads:1891. Writes:415. Blocks savedif430
Estimatēd cost:
    Connect time cost so.00 Disk access.cost so.34
    CPU cost 54月.39 Total cost s 48.73
```


### 3.6 SCAN PROGRAM

The most time consuming aspect for completing VEHSIM batch runs has been the requirement that the input commands be in exact card image formats because the VEHSIM control files were originally intended to be key punched from prepared forms as shown in section 5.2 .

For this reason a utility program SCAN was created to accept free-format VEHSIM command lines and transform them into VEHSIM compatible control files. A sample SCAN file is shown below.

げ
－T゙F いごいこのこの
$=$＝ELK S．．Sr

－Limit feint Eff

－ISE H：FES GEHIELE


＊
－是
－LEE GIT1 GCMEETEF
－HE EGCT EOMEETEF

－GE EGFRIE EDTTE
－HEIFI bEIBKT Eこーを．



－ HEIF É E．EG
－HEIIFi
－Lipilt ffilit jaf



－ine cincTrcio．
－nIFT ؛
－ $\operatorname{lEI}$ IF＇
1.6
－LSE TGFSFEEL
IffyInt Etinglute
ZTEST
－玉．

## 4. VEHICLE SYSTEMS INTEGRATION

In order to simulate an entire vehicle system correctly it is necessary to select the vehicle parts which combine to represent an actual vehicle. This procedure, known as vehicle systems integration, involves scanning the VEHSIM parts file and matching the "VEHSIM part" to the actual vehicle system part. If the part is not available the user must apply discretion in determining the part nearest to the actual vehicle system part. In addition, the user must then determine how this part integrates into the entire vehicle system.

Once the user is satisfied with the parts selection, a VEHSIM request form (Figure 4-1) should be completed to insure that all the parts necessary to form a vehicle have been selected. Also, modifications to these parts can be made at the bottom of the request form. A description of each of the parts is provided below to facilitate the user's selection of vehicle parts.

## VEHICLE

The vehicle contains basic characteristics that describe the vehicle such as weight, frontal area, tire rolling radius, aerodynamic drag coefficient, axle ratio, axle efficiency, wheel inertia, propshaft inertia, and rolling resistance coefficients. The weight of the vehicle should be selected based on the drive schedule. For example, the weight of a light duty truck should be GVWR (gross vehicle weight rating) for a performance schedule and (IW) inertia weight for the EPA fuel economy schedules.

The INERTIA weight (IW $=C U R B \pm 300 \mathrm{lb})$ class for the EPA schedules can be determined from Table 4-1. The aerodynamic drag characteristics of the vehicle can be determined from a number of sources. The EPA lists dynamometer horsepower at 50 mph for aerodynamic loading. The frontal areas of vehicles can usually be obtained from manufacturer's specifications or from the MMAA (Motor Vehicle Manufacturers Association) specifications form.

## VEHSIM CAR REQUEST



FIGURE 4-1. VEHSIM REQUEST

INERTIA WEIGHT
UP TO 1062

1063-1187
1188-1312
1313-1437
1438-1562
1563-1687
1688-1812
1813-1937
1938-2062
2063-2187
2188-2312
2313-2437
2438-2562
2563-2687
2688-2812
2813-2937
2938-3062
3063-3187
3188 - 3312
$3313-3437$
3438-3562
3563-3687
3688 - 3812
3813-3937
3938-4125
4126-4375
4376-4625
4626-4875
4876-5125
5126-5375
5376-5750

INERTIA WEIGHT CLASS (LBS)
1979 AND EARLIER 1980 AND BEYOND

| 1000 | 1000 |
| :--- | :--- |
| 1000 | 1125 |
| 1250 | 1250 |
| 1250 | 1375 |
| 1500 | 1500 |
| 1500 | 1625 |
| 1750 | 1750 |
| 1750 | 1875 |
| 2000 | 2000 |
| 2000 | 2125 |
| 2250 | 2250 |
| 2250 | 2375 |
| 2500 | 2500 |
| 2500 | 2625 |
| 2750 | 2750 |
| 2750 | 2875 |
| 3000 | 3000 |
| 3000 | 3125 |
| 3000 | 3250 |
| 3500 | 3375 |
| 3500 | 3500 |
| 3500 | 3625 |
| 3500 | 3750 |
| 4000 | 3875 |
| 4000 | 4000 |
| 4000 | 4250 |
| 4500 | 4500 |
| 4500 | 4750 |
| 5000 | 5000 |
| 5000 | 5250 |
| 5500 | 5500 |

INERTIA WEIGHT

5751-6250
6251-6750
6751-7250
7251 - 7750
7751 - 8250
8251-8750
8751-9250
9251 - 9750
9751 - 10,000
9751 - 10,000

INERTIA WEIGHT CLASS (LBS)
1979 AND EARLIER 1980 AND BEYOND

6000
6000
6500
7000
7500
8000
8500
9000
9500
10,000
10,000

The drag coefficient can be obtained from coast down tests based on aerodynamic loading at 50 mph by

$$
C_{D}=H P / 0.81 *(A f)
$$

where: $\quad C_{D}=$ Aerodynamic drag coefficient
$\mathrm{Hp}=$ Aerodynamic horsepower at 50 mph
Af = Frontal Area ( $f t^{2}$ ).
The tire characteristics are generally supplied by the tire manufacturers. The $N / V$ ratio (rpm/mph) can be compared with the EPA * descriptions by $\frac{N}{V}=\left[\frac{14.0}{R R}\right]$ * $A R * G R$
where: $\quad R R=R o l l i n g$ radius ( $f t$ )
$A R=A x l e ~ r a t i o$
$G R=$ Gear ratio (top).

To obtain valid fuel economy results, the tire manufacturers' N/V ratios should be consistent with the EPA data. A sample of rolling resistance values is shown in Table $4-2$, and the rolling radius (effectively $N / V$ ) can be found in the MVMA specifications form in terms of rev/mile at 45 mph .

## TIRES

The tires are generally considered to be part of the vehicle file. However, there may be situations during a tire study where it is easier to change the tire file rather than change the vehicle file. This occurs, when changing the rolling radius of the tires. The coefficients $C_{1}$ and $C_{2}$ are rolling resistance coefficients. A second order equation is used to approximate the rolling resistance force which can be made linear by setting $C_{2}$ to zero. A tire efficiency term is a multiplicative factor which can be used to adjust for tire slip.
*EPA 1980 Gas Mileage Guide, United States Environmental Protec-
tion Agency, Ann Arbor MI.


## ENGINE

The engine is the most important part of a vehicle system when determining fuel economy. The engine, for simulation purposes, is represented by a compilation of steady state engine test data, commonly termed an "engine map." These engine maps are obtained from engine dynamometer test facilities such as those at the Bartlesville Energy Technology Center. The maps usually consist of 20 load points for each of $10-15$ speed points with about 40 individual measurements at each condition, which include fuel consumption, emissions, spark advance, air-fuel ratio, back pressure, and ambient conditions. The load points are torque and manifold vacuum, and the throttle angle may also be included to accommodate certain shift logics based on engine throttle angle. To produce an engine map, processing and display programs are usually required because of the voluminous data involved. Such programs are in use at the Transportation Systems Center for processing engine data from TSC's Automotive Research Laboratory.* All the engine maps available for use in the VEHSIM program are updated annually** and the format of the engine maps to be input to VEHSIM can be seen in reduced form.***

Engine maps may also be provided by the automobile manufacturers. These maps usually are provided in graphical form, as shown in Figure 4-2. The required format for VEHSIM necessitates a negative torque for each engine speed and if this point is not given it must be extrapolated. For proper simulation it is extremely important that all the data are consistent. For example, a negative torque should occur at a closed throttle angle and torques should uniformly increase for increasing throttle angle.

[^2]

FIGURE 4-2. ENGINE FUEL FLOW FOR 1981 PRODUCTION ENGINE

In some engine tests, wide open throttle cannot always be achieved at idle or low rpm conditions. Therefore, the wide open throttle load point at idle should be extrapolated from the WOT torque curve. Also, when receiving maps in this format, the user should be aware of the test parameters such as fuel octane rating, intake restrictions and accessory loading, since variations in these parameters may sometimes produce different fuel rates for identical engines.

Exhaust gas emission simulation (not recommended except for $\mathrm{NO}_{\mathrm{x}}$ ) is provided for by using the above mentioned preferred units in the engine data card, by using a fuel specific gravity of 0.1198 , and by entering emissions data (gm/hr) in the FUEL RATE data fields. The results of a simulation will produce the inverse of the sought after $\mathrm{gm} / \mathrm{mi}$ emissions, and show this inverse as the fuel economy in the summary sheet.

## GEAR-TRANSMISSION

Gears must be loaded into the parts data file separately. The gear input inertia includes the rotational inertia of the input shaft and attached drive gear while output inertia is the rotational inertia of the specified gear. The gear efficiencies are usually in the range of 96-98 percent.

The transmission part is simply a list of gears used in the transmission. The gears listed must either be already in the data base as individual gear parts, or loaded as gear parts along with the transmission. The transmission part may contain a maximum of 20 gears. Once the transmission part and gears are loaded into the data base, all the gears used in the transmission are entered collectively as the transmission part during a simulation. This eliminates the string of gears to be typed in during interactive simulation. The feature of modifying a gear in the transmission still remains functional through the USE command.

## SHIFT LOGIC

The shift logic is the operating control strategy for the entire vehicle system. The logic for a manual transmission is fixed by the EPA for 3,4 and 5 speed gearboxs as shown in Table 4-3.

TABLE 4-3. EPA SHIFT LOGIC

| Shift | Vehicle Speed (mph) |
| :---: | :---: |
| $1-2$ | 15 |
| $2-3$ | 25 |
| $3-4$ | 40 |
| $4-5$ | 50 |
| $2-1$ | 10 |
| $3-2$ | 20 |
| $4-3$ | 35 |
| $5-4$ | 45 |

The shift logic for an automatic transmission is more complicated and can be presented in a variety of approaches. Each shift logic is tailored for a specific vehicle-engine combination and is presented in terms of shift lines for a given engine load and speed (vehicle, engine or propshaft) as shown in Figures 4-3 and 4-4. Using a shift logic not designated for a particular vehicle, or modifying vehicle parameters for a given shift logic may produce erroneous results or cause a simulation to be terminated. Because the automatic shift logic relies on the engine map for a load setting, the engine should be checked for compatability with the shift logic. For problems associated with the shift logic, a debug may help in solving a shift related problem.

## CONVERTER

Since most coast converter curves are identical, the drive converter is the critical converter element to simulate. Converter curves are provided in a variety of ways including those


FIGURE 4-3. SAMPLE SHIFT LOGIC USING VACUUM


FIGURE 4-4. SAMPLE SHIFT LOGIC USING ENGINE THROTTLE ANGLE
presented in Figures 4-5 and 4-6. To facilitate an understanding of the converter, the user should understand the "K" factor and its effect on the torque converter curves. For example, when calculating road speed based on engine speed the SR (speed ratio) will vary depending upon engine load. Therefore, identical road speeds will not always produce identical engine speeds. This is an important factor to consider when programming shift logics

Because torque converter data is not always available, a method for determining torque converter characteristics has been established by Arthur D. Little based on fundamental equations.* Also, torque converters are sometimes referenced in terms of STR (stall torque ratio) which is the torque ratio at zero speed ratio. This is the maximum torque multiplication of the converter.

Torque converter data for both a coast and drive converter must be provided even in the case of a manual transmission, which is considered as a locked-up torque converter. The converter input to VEHSIM may be accomplished by two different methods depending on the format of the data received from the manufacturer.

## ROUTE

The route specification is used to indicate distances and driving conditions. Maximum flexibility is provided for driving conditions by allowing them to be changed from one milepost to the next. The route specification and driving schedule must be checked for compatibility when grades and winds are utilized. For example, one would not specify a 75 MPH speed ox a 5 percent grade with a 50 MPH headwind for a 4,500 pound vehicle. Grade changes must not exceed 1 percent incremental change for heavy duty trucks. Wind speed may be specified as either positive or negative for head winds or tail winds, respectively. Cross-winds
*Hurter, Donald A., et. al., "Study and Test to Confirm Automobile Drivetrain Components to Improve Fuel Economy," Vol II., Report No. DOT-TSC-NHTSA-79-11 II, May 1979.


FIGURE 4-5. SAMPLE 9.5 INCH TORQUE CONVERTER CURVE
K-Factor torque speed
ratio
0
100
K-FACtOR torque
Pump turbine ratio

may also be considered, but will not be discussed at this time due to wind data limitations and the unresolved question of applicability.

## ACCESSORY

Accessories are simulated by means of torques for given accessory speeds. This information is obtained in a variety of formats. For example, the alternator is obtained in terms of different power (watts) settings as shown in Figure 4-7.* Once the required power settings are determined (e.g. headiights on or off) the appropriate power curve is used for the accessory loading. A simple systems calculation of the alternator input and output loads will help determine the validity of the data. Other accessory data such as that for air conditioners are harder to obtain because of the difficulty in controlling the duty cycle and ambient conditions such as temperature and humidity. If this data is available, care should be taken in determining the laboratory or on-road conditions during the test. The air conditioning data should not be used over the EPA highway or urban cycle since air conditioning is simulated by modifying the dynamometer horsepower by 10 percent up to a maximum of 1.5 hp .

Basically, VEHSIM "sees" the accessory load as a torque for a given engine speed (this speed must be in terms of engine speed which is obtained by using the accessory speed ratio). The most critical part of using accessories in the VEHSIM program is how the user interprets the data used to measure accessory loads. Once this is established and the user is confident of these results, the selection and input of the accessory is relatively simple.

[^3](LI-gT) ヨnర̌OL 9NIYOLOW

## DRIVING SCHEDULE

Driving schedules can be divided into two categories, performance and fuel economy. Performance schedules include 0-60 $\mathrm{mph}, 0-1 / 4 \mathrm{mi}$, and the distance covered in $0-5 \mathrm{sec}$. With the exception of a passing schedule, all performance schedules, which are at WOT, can be consolidated into one top speed schedule. The gradeability can also be determined from this schedule. The fuel economy schedules are the EPA urban (FTP) and highway (HWFET), which are shown in Table 4-4 and Figure 4-8. Of course, any drive schedule can be created for performance or fuel economy purposes.

## TABLE 4-4. DRIVING CYCLE CHARACTERISTICS

| Driving <br> cycle | Length, <br> miles | Average <br> speed, <br> mph | Maximum <br> speed, <br> mph | Time, <br> sec | No. of <br> stops/cycle | Time <br> at idle, <br> $\%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FTP | 7.5 | 20 | 57 | 1371 | 18 | 19.1 |
| HWFET | 10.25 | 48 | 60 | 765 | 2 | 1.0 |

The course of accelerations, cruises, decelerations, and stops are specified in the driving schedule. The courses may be initiated at other than zero conditions on the INITIAL COND card, and an application of this option would be a constant speed cruise such as for the 55 mph study. Accessory duty cycle is also specified in the initial conditions, although it applies throughout the entire driving schedule.

Data in each SEGMENT is grouped according to which data may be specified as only one, optional, or at least one. For the latter type of data, whichever condition is satisfied first will terminate the segment.

## AXLE

The efficiency of the final drive varies slightly with speed and load and can be assumed constant for most simulation runs. Typi cal efficiencies are in the order of 95-98 percent. If the

flgure: 4-8. Speeid-versus-Time traces of fyp nnd hwfet driving cycies
efficiency is constant and the spin losses are negligible, the axle should be included in the vehicle data base. However, the efficiency may vary considerably with light load and low speed. In this case, the user should estimate the efficiency based on a curve of axle efficiency as a function of load and speed.

After reading Chapter IV the user is now ready to input the data according to the format required by VEHSIM. This chapter describes the precise format for data input on a line-by-line basis and indexed to numerical card (terminal) column numbers. Data sheets may be reproduced, filled out, and submitted directly for keypunching or remote terminal processing.
5.1 DATA FORMAT SHEET PROCEDURE

Input data for the program is punched on cards according to a specified format, and then read onto a disk or tape. The data format is provided for vehicle parts, specified procedures and utilities. The data format sheets are listed below:

PARTS DATA
(1) ACCESSORY
(2) AXLE
(3) CONVERTER
(4) CONVERTER (OPTIONAL FORM)
(5) ENGINE
(6) GEAR
(7) TIRE
(8) TRANSMISSION
(9) VEHICLE
(10) VEHICLE (OPTIONAL FORM)

## PROCEDURES

(11) DRIVING SCHEDULE
(12) ROUTE
(13) SHIFT LOGIC
(14) DEBUG
(15) DROP
(16) DUMP
(17) LIMIT PRINT
(18) LOCKUP CONV.
(19) MODIFY
(20) PRINT UNITS
(21) REMAP
(22) Simulate
(23) TITLE
(24) UNLOCK CONV.
(25) USE
(26) ZERO
(27) SPLIT

A brief description of the parts data and procedures is provided. The utility formats are self-explanatory and their uses are discussed in Section 2.

Each line on a data sheet indicates one line of code to be punched on a card or typed on a terminal. The columns of a data field within a line are indicated with the appropriate column number. Left-justifying the data, which is always entered in decimal form, facilitates keypunching. Alphabetic names or symbols already included on a data line must also be keypunched starting in the first column. Many of the data forms indicate repeated lines of data. For these cases there is no need to repeat the title line, comment line, and first data line. Part names may be made up of letters and numbers only (no symbols or special characters).

### 5.2 DATA SHEETS

The data sheets for parts data, procedures, and utility commands are described in this section. The format of the data sheets is similar to standard keypunch coding forms. Each part is described on a separate sheet with mandatory key words or phrases already indicated on the sheet. Each new part begins with an asterisk in column one of the first line, followed by the type of part, procedure or utility command. The remaining spaces are to be filled in with data where indicated by explanations on each form.
DATA SHEET 1. ACCESSORY

USE ONLY
WHEN MORE
THAN 10
DATA POINTS
TO BE ENTERED


> 28


 $[$ INPUT RPM


 SPIII LOSSES
DATA SHEET 2. AXLE (Sheet 2 of 2)



DATA SHEET 4. CONVERTER (OPTIONAL FORM)
 **4. default if blank


| 1 | 3 | 19 | 25 | 1 | 37 | 3 | 49 | $55 \quad 6$ |  | 67 7? |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOAD POINT <br> L11411114 | 1.11. | 11111 | 1.11.4 | 1. 11.1 .1 | 1.1111 | 1.1.L11 |  | Lels | 1.111. |  |  |
| FUEL RATE | 1111 | 1.1. | Liself | 1.111 | 1.111-1 | -1.1.1.1 | HL1 | ch111 | 11.1 | 1-1. |  |
|  | 1.14 | ${ }_{1}^{1}$ | 1.111 | 4.1.11 | -111 | M1.11 | 1121.1 | -1111 | 1.1414 | 1.11 |  |
| MAN I FOLD | 11.1 | 11,11 | Lunel | Lurl | I | 11. | Lles | - | , | 1-1 |  |

INCREASING LOAD, FILL SPACES WITH DATA UAITS: THROTTLE (DEGREE)
POINTS AS NEEDED UP TO 20 POINTS MAXIIUI


SId 03JdS 02
01 dn 030
S甘 SIJS 1 NIOd
$03 \exists \mathrm{dS} 1 \forall \exists \mathrm{dJy}$
USE Dilly
(1)
than is data
Prolits 10 be fatemen


| 1318 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED POINT |  |  |  |  |  |  |  |  |  |  |  |
| ENTER VALUE |  |  |  |  |  |  |  |  |  |  |  |
| 1 | $13 \quad 19$ |  | 75 |  |  | , |  |  |  | $\square^{2}$ |  |
| LOAD POINT, | $\ldots 1$. | 1.1.11 | 1,1+1 | 4.1.4 |  | -1.1.1 |  | R.cer | 1.1+11 |  | $\square$ |
| FUEL RATE' | 114 | $\left\lvert\, \begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}\right.$ | 1-1, | -11 | ¢1. | CHL1 | - | -14 | L.111 | , 1 | M11.4 |
| THROTTLE ${ }_{\text {L }}$ | MH. | , 1 | 14.1 | Lus | ${ }_{4}$ | 1.1 | He.1 | L2.13 | 1.14.1 | 1 | 11.1 |
| MANIFOLD | -11 | 1 |  | $\xrightarrow{1}$ | 1 |  | 1 |  | ,! | -1 | 1 |


| $13 \quad 18$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPEED POINT | -14, |  |  |  |  |  |  |  |  |  |
| ENTER VALUE |  |  |  |  |  |  |  |  |  |  |
| LOAD POINT |  | 1.1.1. | 1.1.1 | 1.14 14 | 1.1.1. | -1, | Lehe | 1.1.1. | Mels. | -14.15 |
| fuEL RATE GELHATEL | -14.4.e | 1-21 | 11.11 | -14 | 14L4. | -LLust | -16el | 4.1.1 | -1. ${ }_{1}$ | 1.114.4 |
| THROTTLE | -14 1-1/1 | 14 | 11112 | - 1 | 1.11 .1 | -1.as | A-A.as | -1.41 | -1.1s | 1.1 |
| MANIFOLD <br> [1111111111 | ¢1-1 | -1.en | -14 |  | , | 'lener |  |  | -r | - |
| Increasing load, fill spaces with data <br> points as needed up to 20 points maximum Units: throttle (deg) manifold (in Hg ) |  |  |  |  |  |  |  |  |  |  |

19
( $\underbrace{19}_{\text {PART NAME }}$



1
I

 INPUT RPM $\quad[1$
INPUT RPM MiLlelilelevelelelu TORQUE LOSS


NOTE: ENTER ALL DATA WITH A DECIMAL POINT


GEAR GEAR GEAR GEAR LOAD
INPUT OUTPUT RATIO EFFICIENCY
INERTIA INERTIA
$\left(f t-1 b-\sec ^{2}\right)$
DATA SHEET 7. TIRE

*Rolling resistance coefficients. Make C2 zero
for linear approximation.

DATA SHEET 9. VEHICLE
28

®

DATA SHEET 10. VEHICLE (OPTIONAL)

DATA SHEET 11. DRIVING SCHEDULE (Sheet 1 of 2)

(\%001) $0^{\circ} \mathrm{I}=$ a

SEGMENT END CONDITIONS
(specify at least one)


DATA SHEET 12. ROUTE



REPEAT 4 -CARD SETS AS NEEDED UP TO 10 SETS ( 100 points maximum)


$5355 \quad 60$
3
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$
$\vdots$ GNIER
VAIUE

(ENTER ONE OF The above for each set of units)
REPEAT 3 OR 4
 needed up to 38 SETS FOR. 20 GEARS
DATA SHEET 13. SHIFT LOGIC (Sheet 2 of 2)


NOTES：FOR SHIFTS AND SEGMENT，ENTER SEGMENT NUMBERS
 PRINTOUT CONTINUES TO END OF RUN
会
吕总
鿖
SPECIFIED，
に
응
-
0
0
옹응
DATA SHEET 15. DROP

(enter one of the above)

data Sheet 17. LImit print

NOTE: IF NO LIMIT PRINT COMMANDED,

NOTE: GEAR NUMBERS RANGE FROM 1 to 20
DATA SHEET 19. MODIFY


(enter one of the above for each set of units)

USE ONLY WHEN MORE
THAN 10
DATA POINTS
TO BE ENTERED
FOR EACH
data sheet 22. Simulate

(Default, Car)
DATA SHEET 23. TITLE

*Optional - insert to override actual date

NOTE: GEAR NuMBERS RANGE FROM 1 to 20

(enter one of the above)
NOTE: ONE OF EACH PART ABOVE MUST BE DEFINED BY
2. TWO CONVERTERS (drive and coast) must be specified.
*More than one of these parts may be defined.
TABLE SHEET 27. SPLIT
NOTE: THIS COMMAND EXECUTES THE SPLIT TORQUE OPTION

The graphics package was designed with the intent to enhance capabilities of the VEHSIM program. This is a powerful tool which helps the user to visualize input and output data. It is a useroriented package in the sense that it was designed to minimize the involvement of the user in the execution of the programs. The listing of the programs (See Vol III) contains commentary and extensive flow diagrams were produced for the entire package. The user is given a choice of running the program via the TEXTRONIX terminal or of writing it on tape and producing results on the CALCOMP plotter.

### 6.1 DESCRIPTION OF PROGRAM SURF3D.FOR

Program SURF3D.FOR was designed to produce an image of $3-D$ surfaces. Mathematically, a surface is defined to be some function of two variables, $X$ and $Y$, which can vary independently of one another. The function value is represented on the $Z$ coordinate axis.

In order to represent a surface with a device that can only draw lines, it is usually necessary to project a succession of lines lying on the surface. The manner in which the lines may be chosen is arbitrary, but the method used most often is to drop a rectangular mesh, or grid, over the surface and represent the surface in terms of the deformation of this tight fitting "stocking." This is the technique used by this program and it may be stated formally by saying that the surface is represented in terms of lines having
a) constant $X$ and varying $Y$ and $Z$
b) constant $Y$ and varying $X$ and $Z$.

The projection of this mesh onto the $X-Y$ plane is a grid and is referred to as the base grid of the surface. Program SURFJD.FOR constructs a surface from scattered (non-regular $X-Y$ ) points. It constructs a regular $Z$ matrix from the scattered ( $X, Y, Z$, ) values
regardless of their $X$ and $Y$ ordering. It can be noted that the program will also produce results for the surfaces defined by the matrix, or array, whose values correspond to the $Z$ values at the intersection (mesh points) of the base grid. The user is given a choice of running the program interactively via TEXTRONIX terminal or writing it on tape with the following drawing on CALCOMP plotter. The program asks the user to type the numbers $N X$ and $N Y$ which stand for the number of rows and columns in the matrix. If the data are scattered (non-regular) one still has to tell the computer what kind of $X-Y$ matrix he expects to get. The default value for $N X$ is 20 and for $N Y$ is 10 . The data input for the program is normally very large. This is why the input data must be stored in the file VAS.DAT on disk $B$. An example of file VAS.DAT is shown in Table 6-1 and an example of output is shown in Figures $6-1$ and 6-2. This program is closely related to the program SURF2D.FOR. These two programs represent two alternative ways of showing the $3-D$ surface. The listing of the program contains comments.

### 6.2 DESCRIPTION OF PROGRAM SURF2D.FOR

Program SURF2D.FOR was designed to produce an image of contour plots of a user's data. The contouring enables the user to display a surface representing a function of two variables. One method of displaying this surface is through 3-D representation (see description of program SURF3D.FOR). Another way is by slicing the surface horizontally and drawing the lines of intersection with the surface. These are called contour lines.

Once a surface is described in matrix form, a set of contour lines may be generated. The technique for generating contour lines is a linear interpolation of adjacent surface grid points in both the $X$ and $Y$ directions. The user is given a choice of running the program interactively via the TEXTRONIX terminal or of writing it on tape with the following drawing on the CALCOMP plotter. The user is asked to type the numbers $N X$ and $N Y$ which stand for the number of rows and columns in the $X-Y$ matrix. If the input



FIGUPE 6-1. ENGINE FUEL MAP FOR 5.9 9 ENGINE

RPM
data are scattered, or non-regular, the user must identify the kind of matrix (periodicity) desired. The input data for SURF2D. FOR is normally very large. . This is why the input data must be stored in file VAS.DAT on disk B. The listing of the program contains comments. ${ }^{\circ}$ An example of input data is shown in Table 6-1. Examples of output are shown in Figures 6-3 and 6-4.

### 6.3 DESCRIPTION OF PROGRAM GEO.FOR

Program GEO.FOR was designed to produce contour plots of a user's data on a $2-D$ surface. The contouring enables the user to display a surface representing a function of two variables. One method of displaying this surface is through 3-D representation (see description of program SURF3D.FOR). Another way is by slicing the surface horizontally and drawing the lines of intersection with the surface. These are called contour (or geodesic, or equipotential) lines.

Program GEO.FOR draws the contour lines on a 2 -D axis system. GEO.FOR is closely related to the program SURF2D.FOR. SURF2D. FOR draws the contour lines on a $3-D$ axis system. Program GEO.FOR is quite general and may be applied to all sorts of applications. Once a surface is described in matrix form, a set of contour lines may be generated. The technique GEO.FOR uses for generating contour lines is a linear interpolation of adjacent surface grid points in both $X$ and $Y$ directions. It does not interpolate or smooth data values and it works on a regular set of data.

Contour line drawings differ from normal curve drawings in that each set of curves represents a different vertical level of the data. Having all of these lines drawn as the same type of curve would make it nearly impossible to read a contour plot. Therefore, GEO.FOR will draw the more significant levels as heavy (bolder) lines. They will be labeled with the value of the $Z$ level.


FIGURE 6-3. ENGINE FUlil, MAP CONTOUR Plot

FIGURE 6-4. ENGINE HORSEPOWER AS A FUNCTION OF TORQUE AND RPM

The user is given a choice of running the program interactively via TEXTRONIX terminal or of writing it on tape with the following drawing on CALCOMP plotter. The user is asked to type the numbers $N X$ and $N Y$ which stand for the number of rows and columns in the $X-Y$ matrix. The default value for $N X$ is 20 and for NY it is 10. The user already has a two dimensional array, $Z$, on file 'VASI.DAT' on disk B. GEO.FOR will scan the $Z$ array and generate contour-line curves at intervals of every 5 units. The program will ask the user to type the number of rows and columns in the matrix. The listing of the program contains comments. An example of input data is shown in Table 6-1. Examples of output data are shown in Figure 6-5.

### 6.4 DESCRIPTION OF PROGRAM HPOWER.FOR

Program HPOWER.FOR was designed with the intent of drawing the family of curves which are described by the same algorithm.

In this program, the horsepower of the engine is calcculated as a function of torque and RPM. In a 3-D space. this would correspond to a family of parabolic hyperboloids. This program does the $2-D$ representation of horsepower as a function of torque and RPM. As a result of the execution of HPONER.FOR, one gets a family of hyperbolas which represent horsepowers with the user-supplied increment (in H.P.). The resulting curves are distinguished by different marks. There are 15 different markers and they are repeated only when all of them are exhausted.

The program asks the user to type the number NN which stands for the number of curves to be drawn. It also asks for the increment INCR which stands for the step increment between two curves. The user is given a choice of running the program via TEXTRONIX terminal or using CALCOMP plotter. The listing of the program contains comments. An example of output is shown in Figure 6-6.


FIGURE 6-5. ENGINE FUEL MAP CONTOUR PLOT

### 6.5 DESCRIPTION OF PROGRAM DIABGR.FOR

Program DIABGR.FOR was designed with the intent of plotting the data on a two dimensional axis system. It draws all the inputted points and supplies them with a distinguishing mark. Additionally, the program draws the grid.

The user is given a choice of running the program interactively via TEXTRONIX terminal or writing it on the tape with the following drawing on CALCOMP plotter. The user is asked to enter the number $I M$ which stands for marker specification:
+1 - points are connected and there is a symbol at every point;
-1 - points are not connected and there is a symbol at every point;
0 - points are connected with no symbols drawn.
A symbol will always appear at the first and last points of IM. NE. 0 regardless of the value of $I M$. The default value of $I$ ? is +1 . The listing of the program contains comments. An example of the program output is shown in Figure 6-7.

### 6.6 DESCRIPTION OF PROGRAM TRANSF.FOR

Program TRANSF.FOR was designed for the transformation of output data from the VEHSIM program to a form suitable for use as input data for a wide variety of graphics programs. It should be noted that the nhilosophy of this program is very general and is applicable to a wide class of transformation problems. This program transforms the VEHSIM output data onto an array of five dimensional vectors. TRANSF.FOR calls subroutine MB0001.FOR. As an example, consider an output "ENGINE 贝ATA" (see Table 6-2). The program will transform the engine data onto an array of yectors where column 1 represents speed (RPM), column 2, torque (ft-1b), column 3, fuel rate (lb/hr), column 4, throttle (degrees), and column 5, manifold vacuum (in. of Hg ) (see Table 6-1). It has been shown that with this type of formatted data it is very easy to automate the input for a wide range of programs. As an input for TRANS.FOR, use file "MB0001.DAT" sorted on disk B (see Table 6-1). Output will have the name 'VAS.DAT' and will also be stored on disk B. The listing of the program contains comments.


FIGURE 6-6. FAMILY OF HORSEPOWER CURVES

TOROUE


FIGURE 6-7. ENGINE MAP DATA POINTS

1 ENGIN PARTS DATA FILE DIRECTORY 1600CT-80 DSKB :VSMENG.EIN[O4132.402]

```
16-CCT=80
```


## ENGINE DATA (FQFJLO.114)

1978 300.Q ENGINE_FUEL_MAP CATALYJIG_CONVERTER


DISPLACEMENT $=300.1$ MINIMUM MĀ $\overline{X I M U M}$

| 10 SPEED POINTS | ThROTTLE A MGLE ENGINE SPEED | = | $\begin{array}{r} 0.00 \\ 800.0 \end{array}$ | $\begin{array}{r} 80.00 \\ 3200.0 \end{array}$ | $\begin{aligned} & \text { DEGREES } \\ & \text { RPM. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

SPEED (RPM) $=550.00$


SPEED (RPM) $=800.00$

| TOA QUE (FT-LB) | -6.80 | 1.20 | 2.00 | 2.70 | 3.50 | 4.30 | 5.00 | 5.80 | t.tc | 7.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUEL BATE(LB/HR) | 3.00 | 3.30 | 3.00 | 3.00 | 3.00 | 3. 00 | 3.00 | 3.00 | 3.00 | 3.00 |
| THR JTT LE (DEGP.EES) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| MANIFOLD VACUIJM(IN-HG) | 18.50 | 18.50 | 17.00 | 17.00 | 17.00 | 17.00 | . 17.00 | 17.00 | 17.00 | 17.00 |
| TORQUE (FT-LB) | 8.10 | 8.90 | 9.60 | 10.40 | 11.20 | 11.90 | 12.70 | 13.50 | 14.30 | 1¢3.90 |
| FUEL PATE(LB/HR) | 3.00 | 3.00 | 3.00 | 3.70 | 3.70 | 3.70 | 3.70 | 3.50 | 3.00 | 17.60 |
| LHROTTLE(DEGREES) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 80.00 |
| MANIFOLU VAこUUH(IN-HG) | 17.00 | 17.00 | 17.30 | 17.90 | 17.00 | 17.00 | 17.00 | 17.00 | 17.00 | C. 10 |

SPEED ( $\cap P M)=1000.00$

| TOFQUE (FT-L 8 ) FUEL RALE(LB/HR) | $\begin{array}{r} -12.30 \\ 3.00 \end{array}$ | $\begin{array}{r} 0.90 \\ 4.00 \end{array}$ | 13.50 4.00 | $\begin{array}{r} 26.00 \\ 4.40 \\ \hline \end{array}$ | $\begin{array}{r} 38.60 \\ \quad 5.10 \\ \hline \end{array}$ | $\begin{array}{r} 51.10 \\ 5.00 \end{array}$ | $\begin{array}{r} 63.70 \\ 6.90 \end{array}$ | 76.20 8.10 | $\begin{array}{r} 88.80 \\ 5.20 \\ \hline \end{array}$ | $\begin{array}{r} 101.30 \\ -10.40 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THROTTLE(DEGREES) | 2.00 | 2.00 | 2.40 | 3.10 | 4.10 | 5.30 | 6.70 | 8.30 | 10.10 | 12.30 |
| MANIFOLO VACIUMM(IN-HG) | 18.50 | 18.50 | 17.70 | 17.10 | 16.20 | 15. CO | 13.40 | 11.50 | 9.40 | 1.10 |
| TOR Que (FT-LB) | 113.90 | 126.50 | 139.00 | 151.60 | 164.10 | 176.70 | 189.20 | 201.80 | 214.30 | 226.90 |
| FUEL RATE(L8/HR) | 11.50 | 12.70 | 13.80 | 14.80 | 15.80 | 16.80 | 17.80 | 18.80 | 15.80 | 21.00 |
| THDOTTLE(DEGREES) | 14.70 | 17.30 | 19.90 | 21.90 | 23.00 | 23.20 | 23.60 | 20.10 | 30.50 | 80.00 |
| MANIFOLD VACUUM(IN-HGI | 5.00 | 3.10 | 1.60 | 0.70 | 0.30 | 0.40 | 0.90 | 1.20 | 1.10 | 0.10 |
| SPEED (RPM) $=1200.00$ |  |  |  |  |  |  |  |  |  |  |
| TİRQUE (FT-L8) | -17.80 | 1.00 | 13.60 | 26.20 | 38.80 | 51.40 | 64.00 | 76.50 | 84. 10 | ici. 10 |
| FUEL RATE(LB/HD.) | 3.00 | +.70 | 4.80 | $5 \cdot 30$ | t. 00 | 6.90 | 8. 00 | 9.30 | 10.70 | 12.10 |
| TH2 JTTLE(DEGPEES) | 3.20 | 3.20 | 3.90 | 4.80 | 5.80 | 6. 50 | 8.30 | 10.00 | 12.00 | 14.50 |
| MANIFOLD VACUUMIIN-HGI | 18.50 | 18.50 | 18.00 | 17.40 | 16.50 . | 15.20 | 13.60 | 11.00 | c.4U | 7.1U |
| TOPQUE (FT-LB) | 114.30 | 126.90 | 139.50 | 152.10 | 164.70 | 177.30 | 189.50 | 202.5u | $<15.00$ | 221.60 |

Beginning users of VEHSIM tend to make the same errors. A compilation of these errors was made based on user inquires to TSC's Energy Technology Branch. An understanding of each of the errors (including proper interpretation of results) listed below will reduce the fustrations normally experienced by the novice user.

1. Distinction between lockup and non-lockup of gears.
2. Are tires included in the vehicle part or are tires separate part?
3. Shift logic for EPA Highway or Urban Drive Schedules for manual transmission will always be:

- EPA $3 \rightarrow$ Manual 3 speed
- EPA4 $\rightarrow$ Manual 4 speed
- EPA5 $\rightarrow$ Manual 5 speed

4. Shift logic for automatic transmission is NOT EPA3, EPA4, or EPA5, but fixed by the manufacturer. One example is T3R2 for 3 speed automatic.
5. Performance drive schedules (e.g. 0-60 wide open throttle) require different shift logic than that for fuel economy. The particular shift logic is based on the engine. Some examples include 3 WOT 3800 ,

> 3 gears
> shift at 3800 RPM

3 WOT3600 3 gears shift at 3600 RPM
6. Distinction among $C_{1}, C_{2}$, and $C_{D}$ and relative magnitude of their values.
7. Definition of "shift stutter" and where to look for solution to this problem:
A. On second by second printout, look at gear number
B. Shift frequency summary
8. Understanding of output variables and their units Running output:
o Acceleration
o Horsepower at wheels

- Engine RPM
- Engine torque
- Road load horsepower
- Gear number
- Brake specific fuel
- Transmission efficiency
- Speed ratio
o Torque ratio
- Brakes
- Gradeability

Summary output:

- Fuel economy
- Time, fuel distribution
- Energy summary
- Shift frequency
o Gear time distribution
- Engine histogram
- Time
- Torque/speed
- Horsepower

9. Be capable of modifying or creating new parts that include:

- Engine
o Converter
- Transmission
o Gear
- Vehicle
- Tires
- Route
- Drive schedule
- Accessory

This should be accomplished interactively for quick reaction situations that require minor modifications. Major changes will be accomplished by submitting cards via batch mode, such as for a long drive schedule.
10. Be capable of obtaining a listing of:

- program
o parts directory
- Entire directory and parts list
- Any particular part

11. Eventually familarize yourself with program algorithm and, in particular, with output sequence as minor changes in program output will be periodically required.

165 Copies

$$
7-3 / 7-4
$$

$$
\begin{array}{r}
\text { HE18.5.A34 no } \\
\text { NHTSA-81-23 } \\
\text { Zub. Russell } \\
\text { A computer pr } \\
\text { for vehicle } \\
\hline
\end{array}
$$

## 00347クロ3 <br> 


[^0]:    TORGIIE（FT－LB）
    FUEL RATE（LB／HR）
    THPOTTLE（UEGAEES）
    MANIFOLD VACIIJM（IN－HG）

[^1]:    18：00：01 BAJOB
    18：00：CI RAFIL
    18：00：01 BAFIL
    18：00：01 BASIIM

    18：00：01 MONTR 18：00：02 MONTR
    18：00：02 USER
    18：00\％06 ISER
    18：0C：07 MONTK 18：00：07 MONTR 18：00：09 USE．R 18：00：11 ISER 18：00：11 JSER 18；00：11 IJSER 18：00：11 USER 18：00：11 USER 18：00：11 USER 18：00：20 MONTR 18：00：20 USER 18；00：26 USER 18：00：26 USER 18：00：26 IISER 18；00：28 ISER 18：00：28 USE．R － $18: 00: 31$ USER 18：00：31 USER 18：00：32 USER 18：00：32 USE゙F 18：00：32 IISE゙R 18：00：32 USER 18：00：36 USE＇R 18：01：06 USE．R 19；01：06 USER 18：01：11 USER 18：01：23 USER

    18：01：26 USER 18：01：27 USER 18：01：31 USER 18：01：31 USER 18：01：31 USER 18：01：31 USER 18：01：35 USEP 18：01：35 USEF 18：01：35 USER 19；01：36 USEP 18：01：36 USEP 18：01：36 USER 18：01：3n USEP 18：01：44 USER 18：01：47 USER 18：01：51 ISER 18：01：51 USLP －18：01：51 USER 18：01：51 IJSEP 18：01：51 USER 18：01：52 IISER 18：01：59 गSER

[^2]:    *Colello, Ralph G., "Processing and Display Programs for Steady State Engine Test Data," Transportation Systems Center, Report No. PM-T-51, December 1975.
    **Kidd, James A. and Rogowicz, Joseph J., "Engine Catalog and Performance Analysis," Transportation Systems Center, Report No. DOT-TSC-NHTSA-79-39, March 1980.
    ***Kidd, James A. and Colello, Ralph G, "A Compilation of Steady State Automotive Engine Test Data," Transportation Systems Center, Report No. DOT-TSC-NHTSA-78-40, September 1978.

[^3]:    *Gagne, G. et. a1., "Friction and Accessory Tests of a GM 1980, 151 CID Engine", Transportation Systems Center, Report No. DOT-TSC-NHTSA-80-19, May 1980.

